cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295089 a(n) = 3*n^2 + n + 3.

Original entry on oeis.org

3, 7, 17, 33, 55, 83, 117, 157, 203, 255, 313, 377, 447, 523, 605, 693, 787, 887, 993, 1105, 1223, 1347, 1477, 1613, 1755, 1903, 2057, 2217, 2383, 2555, 2733, 2917, 3107, 3303, 3505, 3713, 3927, 4147, 4373, 4605, 4843, 5087, 5337, 5593, 5855, 6123, 6397, 6677, 6963, 7255, 7553, 7857
Offset: 0

Views

Author

Ron Knott, Nov 14 2017

Keywords

Comments

Numbers represented as the palindrome 313 in number base n including base n=1, base 2 (binary) and base 3 with 'illegal' digit 3: 313_1=7, 313_2=17, 313_3=33, ... 313_9=255, 313_10=313, ...

Examples

			313 in base 7 is 3*7^2 + 1*7 + 3 = 157.
		

Crossrefs

Programs

  • Mathematica
    Array[3 #^2 + # + 3 &, 52, 0] (* Michael De Vlieger, Nov 15 2017 *)
    LinearRecurrence[{3, -3, 1}, {3, 7, 17}, 52] (* or *)
    CoefficientList[Series[-(5 x^2 - 2 x + 3)/(x - 1)^3, {x, 0, 51}], x] (* Robert G. Wilson v, Nov 29 2017 *)
  • PARI
    a(n) = 3*n^2 + n + 3; \\ Michel Marcus, Dec 15 2017

Formula

a(n) = A131649(n+3) + 1, n >= 2 (conjectured).
a(n) = A056108(n) + 2 = A049451(n) + 3 = A144391(n) + 4.
From Elmo R. Oliveira, Sep 02 2025: (Start)
G.f.: (3 - 2*x + 5*x^2)/(1-x)^3.
E.g.f.: (3 + 4*x + 3*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)