cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295100 a(n) = n! * [x^n] exp(n*x)/(1 - 2*x).

Original entry on oeis.org

1, 3, 20, 201, 2688, 44815, 894528, 20792205, 551518208, 16438822587, 543934387200, 19783668211153, 784536321392640, 33689132092480839, 1557397919735103488, 77117362592836807125, 4072280214605427376128, 228441851811771488284915, 13566762607790788699226112, 850372121882700252639269337
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 14 2017

Keywords

Comments

The n-th term of the n-th binomial transform of A000165.

Crossrefs

Programs

  • Maple
    S:= series(exp(n*x)/(1-2*x),x,51):
    seq(n!*coeff(S,x,n),n=0..50); # Robert Israel, Nov 14 2017
  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x]/(1 - 2 x), {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ 2^n * exp(n/2) * n!. - Vaclav Kotesovec, Nov 14 2017
a(n) = n! * Sum_{k=0..n} n^k*2^(n-k)/k! = 2^n*Gamma(n+1, n/2)*exp(n/2). - Robert Israel, Nov 14 2017