cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A295098 a(n) = n! * [x^n] exp(n*x)*(1 + exp(x^2/2)*x*(1 + sqrt(Pi/2)*erf(x/sqrt(2)))).

Original entry on oeis.org

1, 2, 10, 75, 760, 9715, 150060, 2719017, 56556480, 1328337117, 34773226340, 1003998156293, 31696623421488, 1086258754644505, 40161805428662876, 1593475984997421525, 67534151717002711296, 3044989873158805787409, 145537456143562934305860, 7350253384336351186239341, 391132792671917087054081200
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 14 2017

Keywords

Comments

The n-th term of the n-th binomial transform of A006882.

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x] (1 + Exp[x^2/2] x (1 + Sqrt[Pi/2] Erf[x/Sqrt[2]])), {x, 0, n}], {n, 0, 20}]

Formula

a(n) ~ c * n^n, where c = 1 + exp(1/2) * (1 + sqrt(Pi/2) * erf(1/sqrt(2))) = 4.0594074053425761445394754992332... - Vaclav Kotesovec, Aug 21 2018

A295099 a(n) = n! * [x^n] exp(n*x)/sqrt(1 - 2*x).

Original entry on oeis.org

1, 2, 11, 96, 1145, 17320, 317547, 6843872, 169603793, 4752704160, 148631984075, 5132717953792, 194022218612169, 7969667589513344, 353510496652374635, 16842274069331520000, 857827370723082312737, 46516913938434654949888, 2675772791433589181094027, 162742831545094476694814720
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 14 2017

Keywords

Comments

The n-th term of the n-th binomial transform of A001147.

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x]/Sqrt[1 - 2 x], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ 2^(n+1) * n^n / exp(n/2). - Vaclav Kotesovec, Nov 14 2017
Showing 1-2 of 2 results.