cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295103 a(n) = (1/n) times the n-th derivative of the third tetration of x (power tower of order 3) x^^3 at x=1.

Original entry on oeis.org

1, 1, 3, 8, 36, 159, 932, 5627, 40016, 302364, 2510712, 22623490, 213486864, 2227719948, 23388469400, 277570328040, 3182959484736, 42530335589088, 523078873327872, 7846745537655360, 101370634558327680, 1717052148685665792, 22657314273376353408
Offset: 1

Views

Author

Alois P. Heinz, Nov 14 2017

Keywords

Comments

First term < 0: a(33) = -26329560314038014690778779463680.

Crossrefs

Column k=3 of A295028.
Cf. A179230.

Programs

  • Maple
    f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
    a:= n-> (n-1)!*coeff(series(f(3), x, n+1), x, n):
    seq(a(n), n=1..23);
  • Mathematica
    f[n_] := f[n] = If[n == 0, 1, (x + 1)^f[n - 1]];
    a[n_] := (n - 1)!*SeriesCoefficient[f[3], {x, 0, n}];
    Array[a, 23] (* Jean-François Alcover, May 31 2018, from Maple *)

Formula

a(n) = 1/n * [(d/dx)^n x^^3]_{x=1}.
a(n) = (n-1)! * [x^n] (x+1)^^3.
a(n) = 1/n * A179230(n).