A025587 '3x+1' record-setters (blowup factor).
1, 3, 7, 15, 27, 703, 1819, 4255, 4591, 9663, 26623, 60975, 77671, 113383, 159487, 1212415, 2684647, 3041127, 3873535, 4637979, 5656191, 6416623, 6631675, 19638399, 80049391, 210964383, 319804831, 1410123943, 70141259775, 77566362559
Offset: 0
Links
- Howard A. Landman, Table of n, a(n) for n = 0..33 (a(0)-a(23) from _David W. Wilson_, a(24)-a(26) from Larry Reeves, a(27) from _Jud McCranie_)
- Index entries for sequences related to 3x+1 (or Collatz) problem
Crossrefs
Programs
-
C
// First column is this sequence. // Second column is the maximum (even) N reached. // Third column is A061523, the ratio of those. // NOTE: This could be made faster by special-casing 1, // starting at 3, and incrementing by 4, since all terms except 1 // are congruent to 3 (mod 4). #include
long long i=1, n, max_n; long double max_ratio=1.0, ratio; int main() { while(1) { n = i; max_n = n; while (n > i) // Can stop as soon as we drop below start. { n = 3*n + 1; max_n = (n > max_n) ? n : max_n; while (!(n&1)) { n >>= 1; } } ratio = (double) max_n / (double) i; if (ratio > max_ratio) { max_ratio = ratio; printf("%lld\t%lld\t%Lf\n", i, max_n, max_ratio); } i += 2; } } // Howard A. Landman, Nov 14 2017 -
Mathematica
With[{s = Array[Max@ NestWhileList[If[EvenQ@#, #/2, 3 # + 1] &, #, # > 1 &]/# &, 2^18]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Mar 13 2018 *)
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), May 03 2001
a(27) from Jud McCranie, Apr 23 2012
a(26) corrected (was missing least significant digit) by Howard A. Landman, Nov 14 2017
Comments