cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A025587 '3x+1' record-setters (blowup factor).

Original entry on oeis.org

1, 3, 7, 15, 27, 703, 1819, 4255, 4591, 9663, 26623, 60975, 77671, 113383, 159487, 1212415, 2684647, 3041127, 3873535, 4637979, 5656191, 6416623, 6631675, 19638399, 80049391, 210964383, 319804831, 1410123943, 70141259775, 77566362559
Offset: 0

Views

Author

Keywords

Comments

This sequence uses the highest even number reached, which will always be a power of 2 larger than A295163. - Howard A. Landman, Nov 20 2017
A proper subsequence of A006884. - Robert G. Wilson v, Dec 23 2017
Let m be the maximum value in row n of A070165. This sequence is the record transform of the sequence m/n for n >= 1. - Michael De Vlieger, Mar 13 2018

Crossrefs

Cf. A295163 for maximum odd number reached, and A061523 for blowup factors.

Programs

  • C
    // First column is this sequence.
    // Second column is the maximum (even) N reached.
    // Third column is A061523, the ratio of those.
    // NOTE: This could be made faster by special-casing 1,
    // starting at 3, and incrementing by 4, since all terms except 1
    // are congruent to 3 (mod 4).
    #include    
    long long    i=1, n, max_n;
    long double    max_ratio=1.0, ratio;
    int main()
    {
        while(1)
        {
            n = i;
            max_n = n;
            while (n > i) // Can stop as soon as we drop below start.
            {
                n = 3*n + 1;
                max_n = (n > max_n) ? n : max_n;
                while (!(n&1))
                {
                    n >>= 1;
                }
             }
            ratio = (double) max_n / (double) i;
            if (ratio > max_ratio)
            {
                max_ratio = ratio;
                printf("%lld\t%lld\t%Lf\n", i, max_n, max_ratio);
            }
            i += 2;
        }
    }
    // Howard A. Landman, Nov 14 2017
  • Mathematica
    With[{s = Array[Max@ NestWhileList[If[EvenQ@#, #/2, 3 # + 1] &, #, # > 1 &]/# &, 2^18]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Mar 13 2018 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 03 2001
a(27) from Jud McCranie, Apr 23 2012
a(26) corrected (was missing least significant digit) by Howard A. Landman, Nov 14 2017

A061523 Integer part of the blowup factor for A025587(n).

Original entry on oeis.org

1, 5, 7, 10, 341, 356, 701, 1600, 1776, 2806, 3994, 9729, 20224, 21891, 107860, 115180, 131346, 204765, 221646, 284348, 426522, 748056, 9099150, 15596837, 27297444, 30359613, 4422186001
Offset: 0

Views

Author

Larry Reeves (larryr(AT)acm.org), May 03 2001

Keywords

Examples

			a(4)=10 since A025587(4)=15 and starting with 15 in the Collatz sequence gives a maximum value of 160 with a blowup factor of 160/15 = 10.66666...
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[Max@ NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, #, # > 1 &]/# &, 2^18]}, Floor@ Union@ FoldList[Max, s]] (* Michael De Vlieger, Mar 13 2018 *)
Showing 1-2 of 2 results.