cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A295179 Expansion of Product_{k>=1} 1/(1 - x^k)^(3*k*(k-1)/2+1).

Original entry on oeis.org

1, 1, 5, 15, 44, 115, 312, 790, 2004, 4908, 11885, 28170, 65987, 152079, 346560, 779808, 1736460, 3825995, 8351733, 18064545, 38747740, 82443251, 174096564, 364991008, 759989218, 1572126699, 3231929735, 6604498620, 13419469596, 27117216441, 54508611399, 109013531864, 216956853105
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 16 2017

Keywords

Comments

Euler transform of the centered triangular numbers (A005448).

Crossrefs

Programs

  • Mathematica
    nmax = 32; CoefficientList[Series[Product[1/(1 - x^k)^(3 k (k - 1)/2 + 1), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (3 d (d - 1)/2 + 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A005448(k).
a(n) ~ exp(-3*Zeta'(-1)/2 + 7*Zeta(3) / (8*Pi^2) - 225*Zeta(3)^3 / (2*Pi^8) + (Pi / (3*2^(3/4)) - 45*Zeta(3)^2 / (2^(7/4) * Pi^5)) * (5*n)^(1/4) - (3*sqrt(5/2) * Zeta(3) / Pi^2) * sqrt(n) + (2^(7/4)*Pi / (3*5^(1/4))) * n^(3/4)) / (2^(71/32) * 5^(7/32) * Pi^(1/8) * n^(23/32)). - Vaclav Kotesovec, Nov 16 2017
Showing 1-1 of 1 results.