cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A295180 Expansion of Product_{k>=1} (1 + x^k)^(3*k*(k-1)/2+1).

Original entry on oeis.org

1, 1, 4, 14, 35, 96, 242, 609, 1483, 3565, 8376, 19389, 44254, 99584, 221470, 486810, 1058914, 2280519, 4866492, 10294313, 21598679, 44966391, 92930485, 190721585, 388828094, 787710401, 1586166758, 3175548134, 6322372729, 12520759979, 24669499432, 48367447687, 94381633962, 183331308393
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 16 2017

Keywords

Comments

Weigh transform of the centered triangular numbers (A005448).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -(3*n*(n-1)/2+1), g(n) = -1. - Seiichi Manyama, Nov 16 2017

Crossrefs

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[Product[(1 + x^k)^(3 k (k - 1)/2 + 1), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (3 d (d - 1)/2 + 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 33}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A005448(k).
a(n) ~ exp(15*Zeta(3) / (28*Pi^2) - 6075*Zeta(3)^3 / (98*Pi^8) + (Pi/6 - 405*Zeta(3)^2 / (28*Pi^5)) * (5*n/7)^(1/4) - (9*sqrt(5/7) * Zeta(3) / (2*Pi^2)) * sqrt(n) + (2*Pi * (7/5)^(1/4)/3) * n^(3/4)) * 7^(1/8) / (2^(19/8) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 16 2017
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d*(3*d*(d-1)/2+1)*(-1)^(1+n/d). - Seiichi Manyama, Nov 16 2017

A302448 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(k^2+1)/2).

Original entry on oeis.org

1, 1, 6, 21, 70, 210, 646, 1881, 5446, 15295, 42355, 115036, 308312, 814023, 2123431, 5471967, 13949888, 35194914, 87952796, 217803302, 534794576, 1302545064, 3148316746, 7554386885, 18001627175, 42613759083, 100240372671, 234371794954, 544812235887
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 08 2018

Keywords

Comments

Euler transform of A006003.

Crossrefs

Programs

  • Mathematica
    nmax = 28; CoefficientList[Series[Product[1/(1 - x^k)^(k (k^2 + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (d^2 + 1)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 28}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A006003(k).
a(n) ~ exp(5 * (3*Zeta(5))^(1/5) * n^(4/5) / 2^(8/5) + Zeta(3) * n^(2/5) / (2^(9/5) * (3*Zeta(5))^(2/5)) + Zeta'(-3)/2 + 1/24 - Zeta(3)^2 / (120 * Zeta(5))) * (3*Zeta(5))^(43/400) / (2^(57/200) * sqrt(5*A*Pi) * n^(243/400)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 08 2018
Showing 1-2 of 2 results.