A295236 Hemi-imperfect numbers: numbers such that the denominator of k/A206369(k) is equal to 2.
3, 10, 42, 60, 63, 840, 1260, 12642, 18480, 18900, 18963, 154350, 228480, 252840, 379260, 3458700, 5562480, 5688900, 68772480, 1041068700, 15032156160, 53621568000, 4524679004160, 9812746944000
Offset: 1
Examples
3 is a term since rho(3) = 2, so 3/rho(3) is 3/2. 10 is a term since rho(10) = 4, so 10/rho(10) is 5/2. 42 is a term since rho(42) = 12, so 42/rho(42) is 7/2.
Links
- Douglas E. Iannucci, On a variation of perfect numbers, INTEGERS: Electronic Journal of Combinatorial Number Theory, 6 (2006), #A41.
- László Tóth, A survey of the alternating sum-of-divisors function, arXiv:1111.4842 [math.NT], 2011-2014.
- Wikipedia, Hemiperfect number
Programs
-
Maple
rho:= proc(n) local f; mul((f[1]^(f[2]+1)+(-1)^f[2])/(f[1]+1), f = ifactors(n)[2]); end proc: select(t -> denom(t/rho(t)) = 2, [$1..10^6]); # Robert Israel, Nov 20 2017
-
Mathematica
(* b = A209369 *) b[n_] := n*DivisorSum[n, LiouvilleLambda[#]/# &]; Select[Range[10^6], If[Denominator[#/b[#]] == 2, Print[#]; True, False]&] (* Jean-François Alcover, Dec 04 2017 *)
-
PARI
rho(n) = {my(f = factor(n), res = q = 1); for(i=1, #f~, q = 1; for(j = 1, f[i, 2], q = -q + f[i, 1]^j); res *= q); res;} isok(n) = denominator(n/rho(n))==2;
Extensions
a(20) from Jinyuan Wang, Feb 15 2020
a(21)-a(24) from Giovanni Resta, Feb 17 2020
Comments