A295344 Maximum number of lattice points inside and on a circle of radius n.
1, 5, 14, 32, 52, 81, 116, 157, 208, 258, 319, 384, 457, 540, 623, 716, 812, 914, 1025, 1142, 1268, 1396, 1528, 1669, 1816, 1976, 2131, 2300, 2472, 2650, 2836, 3028, 3228, 3436, 3644, 3859, 4080, 4314, 4548, 4792, 5038, 5289, 5555, 5818, 6092, 6376, 6668, 6952
Offset: 0
Keywords
Examples
For a circle centered at the point (x, y) = (1/2, 1/4) with radius 2, there are 14 lattice points inside and on the circle. . . Center # Pts in/ . x y Radius on circle . ----- ----- ------ --------- . 0 0 1 5 . 1/2 1/4 2 14 . 1/2 1/2 3 32 . 1/2 1/2 4 52 . 0 0 5 81 . 1/2 1/3 6 116 . 2/5 1/5 7 157 . 1/2 1/2 8 208 . 1/2 2/9 9 258 . 20/47 19/56 10 319 . 1/2 1/2 11 384 . 11/23 7/20 12 457 . 1/2 1/2 13 540 . 10/21 3/13 14 623 . 1/2 1/2 15 716 . 1/2 1/2 16 812 . 2/5 2/5 17 914 . 3/8 5/14 18 1025 . 1/2 1/6 19 1142 . 9/19 8/17 20 1268
References
- B. R. Srinivasan, Lattice Points in a Circle, Proc. Nat. Inst. Sci. India, Part A, 29 (1963), pp. 332-346.
Programs
-
PARI
L=List([]); for(n=0, 47, if(n>0, j=5, j=1); g=0; h=0; f=ceil(Pi*n^2); for(d=2, floor(f/2), for(c=1, floor(d/2), if(gcd(c, d)==1, for(e=d, d+1, if(e/f<=1/2, a=c/d; b=e/f; if(a+b>=1/2, t=0; for(x=-n, n+1, for(y=-n, n+1, z=(a-x)^2+(b-y)^2; if(z<=n^2,t++))); if(t>j, j=t; if(a>=b, g=a; h=b, g=b; h=a)))))))); print("a("n") = "j", the center of the circle is at point ("g", "h")."); listput(L, j)); print(); print(Vec(L));
Formula
a(n) = Pi*n^2 + O(n), as n goes to infinity.
a(n) = A123690(2*n) for n >= 1.
Extensions
a(10) corrected by Giovanni Resta, Nov 24 2017
Comments