A295370 Number of permutations of [n] avoiding three consecutive terms in arithmetic progression.
1, 1, 2, 4, 18, 80, 482, 3280, 26244, 231148, 2320130, 25238348, 302834694, 3909539452, 54761642704, 816758411516, 13076340876500, 221396129723368, 3985720881222850, 75503196628737920, 1510373288335622576, 31634502738658957588, 696162960370556156224, 15978760340940405262668
Offset: 0
Keywords
Examples
a(3) = 4: 132, 213, 231, 312. a(4) = 18: 1243, 1324, 1342, 1423, 2134, 2143, 2314, 2413, 2431, 3124, 3142, 3241, 3412, 3421, 4132, 4213, 4231, 4312.
Links
Crossrefs
Programs
-
Maple
b:= proc(s, j, k) option remember; `if`(s={}, 1, add(`if`(k=0 or 2*j<>i+k, b(s minus {i}, i, `if`(2*i-j in s, j, 0)), 0), i=s)) end: a:= n-> b({$1..n}, 0$2): seq(a(n), n=0..12);
-
Mathematica
Table[Length[Select[Permutations[Range[n]],!MemberQ[Differences[#,2],0]&]],{n,0,5}] (* Gus Wiseman, Jun 03 2019 *) b[s_, j_, k_] := b[s, j, k] = If[s == {}, 1, Sum[If[k == 0 || 2*j != i + k, b[s~Complement~{i}, i, If[MemberQ[s, 2*i - j ], j, 0]], 0], {i, s}]]; a[n_] := a[n] = b[Range[n], 0, 0]; Table[Print[n, " ", a[n]]; a[n], {n, 0, 16}] (* Jean-François Alcover, Nov 20 2023, after Alois P. Heinz *)
Extensions
a(22)-a(23) from Vaclav Kotesovec, Mar 22 2022
Comments