A295380 Number of canonical forms for separation coordinates on hyperspheres S_n, ordered by increasing number of independent continuous parameters.
1, 1, 1, 2, 3, 1, 3, 8, 5, 1, 6, 20, 22, 8, 1, 11, 49, 73, 46, 11, 1, 23, 119, 233, 206, 87, 15, 1, 46, 288, 689, 807, 485, 147, 19, 1, 98, 696, 1988, 2891, 2320, 1021, 236, 24, 1, 207, 1681, 5561, 9737, 9800, 5795, 1960, 356, 29, 1, 451, 4062, 15322, 31350, 38216, 28586, 13088, 3525, 520, 35, 1, 983, 9821, 41558, 97552, 139901, 127465, 74280, 27224, 5989, 730, 41, 1
Offset: 1
Examples
From _Petros Hadjicostas_, Jan 27 2018: (Start) Triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 ---------------------------------------------------------------- (S^1) 1, (S^2) 1, 1, (S^3) 2, 3, 1, (S^4) 3, 8, 5, 1, (S^5) 6, 20, 22, 8, 1, (S^6) 11, 49, 73, 46, 11, 1, (S^7) 23, 119, 233, 206, 87, 15, 1, (S^8) 46, 288, 689, 807, 485, 147, 19, 1, (S^9) 98, 696, 1988, 2891, 2320, 1021, 236, 24, 1, (S^10) 207, 1681, 5561, 9737, 9800, 5795, 1960, 356, 29, 1, ... (End)
Links
- C. G. Bower, Transforms (2)
- S. Devadoss and R. C. Read, Cellular structures determined by polygons and trees, arXiv/0008145 [math.CO], 2000.
- S. L. Devadoss and R. C. Read, Cellular structures determined by polygons and trees, Ann. Combin., 5 (2001), 71-98.
- K. Schöbel and A. Veselov, Separation coordinates, moduli spaces, and Stasheff polytopes, arXiv:1307.6132 [math.DG], 2014.
- K. Schöbel and A. Veselov, Separation coordinates, moduli spaces and Stasheff polytopes, Commun. Math. Phys., 337 (2015), 1255-1274.
Formula
From Petros Hadjicostas, Jan 28 2018: (Start)
G.f.: If B(x,y) = Sum_{n,k>=0} T(n,k)*x^n*y^k (with T(0,0) = 1, T(0,k) = 0 for k>=1, and T(n,k) = 0 for 1 <= n <= k), then B(x,y) = 1 + (x/2)*(B(x,y)^2/(1-x*y*B(x,y)) + (1 + x*y*B(x,y))*B(x^2,y^2)/(1-x^2*y^2*B(x^2,y^2))).
If c(N,K) = A232206(N,K) and C(x,y) = Sum_{N,K>=0} c(N,K)*x^N*y^K (with c(1,0) = 1 and c(N,K) = 0 for 0 <= N <= K), then C(x,y) = x*B(x*y, 1/y) and B(x,y) = C(x*y, 1/y)/(x*y).
Setting y=0 in the above functional equation, we get x*B(x,0) = x + (1/2)*((x*B(x,0))^2 + x^2*B(x^2,0)), which is the functional equation for the g.f. of the first column. This proves that T(n,k=0) = A001190(n+1) for n>=0 (assuming T(0,0) = 1).
The g.f. of the second column is B_1(x,0) = Sum_{n>=0} T(n,2)*x^n = lim_{y->0} (B(x,y)-B(x,0))/y, where B(x,0) = 1 + x + x^2 + ... is the g.f. of the first column. We get B_1(x,0) = x*B(x,0)*(B(x,0) - 1)/(1 - x*B(x,0)).
(End)
Extensions
Typo for T(11,3)=15322 corrected by Petros Hadjicostas, Jan 28 2018
Comments