cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295572 First differences of A081881.

Original entry on oeis.org

1, 2, 6, 16, 43, 117, 318, 865, 2351, 6391, 17372, 47222, 128363, 348927, 948482, 2578241, 7008386, 19050768, 51785356, 140767193, 382644902, 1040136684, 2827384648, 7685628310, 20891703776, 56789538739, 154369971201, 419621087576, 1140648377196, 3100603756393
Offset: 1

Views

Author

N. J. A. Sloane, Nov 30 2017, following a suggestion from Loren Booda

Keywords

Comments

See A081881 and A295571 for discussion.
If the harmonic series is divided into the longest possible consecutive groups so that the sum of each group is <= 1, then a(n) is the number of terms in the n-th group. - Pablo Hueso Merino, Feb 16 2020

Examples

			From _Pablo Hueso Merino_, Feb 16 2020: (Start)
a(1) = 1 because 1 <= 1, 1 is one term (if you added 1/2 the sum would be greater than 1).
a(2) = 2 because 1/2 + 1/3 = 0.8333... <= 1, 1/2 and 1/3 are two terms (if you added 1/4 the sum would be greater than one).
a(3) = 6 because 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 = 0.9956... <= 1, it is a sum of six terms. (End)
		

Crossrefs

Programs

  • Mathematica
    a[1]=1;
    a[n_]:= a[n]= Module[{sum = 0}, r = 1 + Sum[a[k], {k, n-1}];
       x = r;
       While[sum <= 1, sum += 1/x++];
       p = x-2;
       p -r +1];
    Table[a[n], {n, 10}] (* Pablo Hueso Merino, Feb 16 2020 *)

Formula

a(1) = 1, a(n) = (max(m) : Sum_{s=r..m} 1/s <= 1)-r+1, r = Sum_{k=1..n-1} a(k). - Pablo Hueso Merino, Feb 16 2020
a(n) ~ c * exp(n), where c = (exp(1)-1) * A300897 = 0.290142809280953235916025... - Vaclav Kotesovec, Apr 05 2020

Extensions

More terms from Jinyuan Wang, Feb 20 2020