cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A295574 a(n) = Sum_{1 <= j <= n/2, gcd(j,n)=1} j^2.

Original entry on oeis.org

0, 1, 1, 1, 5, 1, 14, 10, 21, 10, 55, 26, 91, 35, 70, 84, 204, 75, 285, 140, 210, 165, 506, 196, 525, 286, 549, 406, 1015, 340, 1240, 680, 880, 680, 1190, 654, 2109, 969, 1482, 1080, 2870, 966, 3311, 1650, 2010, 1771, 4324, 1544, 4214, 2050
Offset: 1

Views

Author

N. J. A. Sloane, Dec 08 2017

Keywords

Comments

n does not divide a(n) iff n = (2^k)*(q^m) with k > 0, m >= 0 and q odd prime such that q == 3 (mod 4) or n = (2^k)*(3^L)*Product_{q} q^(v_q) with k >= 0, L > 0, v_q >= 0 and all q odd primes such that q == 5 (mod 6). - René Gy, Oct 21 2018

Crossrefs

In the Baum (1982) paper, S_1, S_2, S_3, S_4 are A023896, A053818, A053819, A053820, and S'_1, S'_2, S'_3, S'_4 are A066840, A295574, A295575, A295576.
Cf. A023022.

Programs

  • Maple
    R:=proc(n,k) local x,t1,S;
    t1:={}; S:=0;
    for x from 1 to floor(n/2) do if gcd(x,n)=1 then t1:={op(t1),x^k}; S:=S+x^k; fi; od;
    S; end;
    s:=k->[seq(R(n,k),n=1..50)];
    s(2);
  • Mathematica
    f[n_] := Plus @@ (Select[ Range[n/2], GCD[#, n] == 1 &]^2); Array[f, 50] (* Robert G. Wilson v, Dec 10 2017 *)
  • PARI
    a(n) = sum(j=1, n\2, (gcd(j, n)==1)*j^2); \\ Michel Marcus, Dec 10 2017

A295576 a(n) = Sum_{1 <= j <= n/2, gcd(j,n)=1} j^4.

Original entry on oeis.org

0, 1, 1, 1, 17, 1, 98, 82, 273, 82, 979, 626, 2275, 707, 2674, 3108, 8772, 3027, 15333, 9044, 14994, 9669, 39974, 17668, 50085, 24310, 60597, 50470, 127687, 45604, 178312, 103496, 149908, 103496, 225302, 129750, 432345, 187017, 349830, 266088, 722666
Offset: 1

Views

Author

N. J. A. Sloane, Dec 08 2017

Keywords

Comments

If p is an odd prime, a(p) = p*(p^2-1)*(3*p^2-7)/480. - Robert Israel, Dec 10 2017

Crossrefs

In the Baum (1982) paper, S_1, S_2, S_3, S_4 are A023896, A053818, A053819, A053820, and S'_1, S'_2, S'_3, S'_4 are A066840, A295574, A295575, A295576.

Programs

  • Maple
    f:= n -> add(t^4, t = select(t->igcd(t,n)=1, [$1..n/2])):
    map(f, [$1..100]); # Robert Israel, Dec 10 2017
  • Mathematica
    f[n_] := Plus @@ (Select[Range[n/2], GCD[#, n] == 1 &]^4); Array[f, 41] (* Robert G. Wilson v, Dec 10 2017 *)
  • PARI
    a(n) = sum(j=1, n\2, (gcd(j, n)==1)*j^4); \\ Michel Marcus, Dec 10 2017
Showing 1-2 of 2 results.