A295589 Numbers k such that Bernoulli number B_{k} has denominator 33330.
100, 1700, 7100, 16700, 22300, 25700, 28300, 31300, 31700, 33100, 35300, 37900, 38300, 38900, 39700, 44900, 45700, 47900, 52100, 56900, 58700, 60700, 66100, 75100, 75700, 78700, 79700, 83900, 85700, 85900, 88100, 90700, 96700, 99100
Offset: 1
Examples
Bernoulli B_{100} is -945980378191221252952274330694937218727028415330669361333856962043113954151972 47711/33330, hence 100 is in the sequence.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 33330); # Alternative: # according to Robert Israel code in A282773 with(numtheory): filter:= n -> select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 11, 101}: select(filter, [seq(i, i=1..10^5)]);
-
Mathematica
Select[Range[100,100000,100],Denominator[BernoulliB[#]]==33330&] (* Harvey P. Dale, Aug 05 2022 *)
Comments