A295590 Numbers k such that Bernoulli number B_{k} has denominator 46410.
48, 10128, 16944, 21072, 25008, 28176, 31056, 33648, 35184, 39696, 42288, 52656, 55824, 59952, 60432, 62448, 71664, 73104, 77808, 78096, 82704, 83568, 84432, 91824, 93648, 98544, 100176, 100272, 102288, 107664, 108912, 110256, 110832, 112368, 114096, 117168, 120144
Offset: 1
Examples
46410 = 2*3*5*7*13*17. Bernoulli B_{48} is -5609403368997817686249127547/46410, hence 48 is in the sequence.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,64722); # Alternative: # according to Robert Israel code in A282773 with(numtheory): filter:= n -> select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 13, 17}: select(filter, [seq(i, i=1..10^5)]);
-
Mathematica
Select[48*Range[2600],Denominator[BernoulliB[#]]==46410&] (* Harvey P. Dale, May 17 2020 *)
Comments