cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295623 a(n) = n! * [x^n] exp(n*x*exp(x)).

Original entry on oeis.org

1, 1, 8, 90, 1424, 28900, 716292, 20972098, 708317248, 27108056808, 1159375192100, 54799938951934, 2836735081572240, 159606310760007436, 9698172715195196260, 632924646574215596850, 44153807025286701187328, 3278903858941755472870864, 258247909552273997037934788
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 24 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x Exp[x]], {x, 0, n}], {n, 0, 18}]
    Table[Sum[BellY[n, k, n Range[n]], {k, 0, n}], {n, 0, 18}]
  • PARI
    a(n) = sum(k=0, n, n^k*k^(n-k)*binomial(n, k)); \\ Seiichi Manyama, Jul 04 2022

Formula

a(n) = n! * [x^n] exp(n*Sum_{k>=1} x^k/(k - 1)!).
From Seiichi Manyama, Jul 05 2022: (Start)
a(n) = [x^n] Sum_{k>=0} (n * x)^k/(1 - k*x)^(k+1).
a(n) = Sum_{k=0..n} n^k * k^(n-k) * binomial(n,k). (End)