A295633 Triangle read by rows: T(n,k) = number of nonequivalent dissections of an n-gon into k polygons by nonintersecting diagonals up to rotation.
1, 1, 1, 1, 1, 1, 1, 2, 4, 4, 1, 2, 8, 12, 6, 1, 3, 16, 40, 43, 19, 1, 3, 25, 93, 165, 143, 49, 1, 4, 40, 197, 505, 712, 504, 150, 1, 4, 56, 364, 1274, 2548, 2912, 1768, 442, 1, 5, 80, 646, 2878, 7672, 12400, 11976, 6310, 1424, 1, 5, 105, 1050, 5880, 19992, 42840, 58140, 48450, 22610, 4522
Offset: 3
Examples
Triangle begins: (n >= 3, k >= 1) 1; 1, 1; 1, 1, 1; 1, 2, 4, 4; 1, 2, 8, 12, 6; 1, 3, 16, 40, 43, 19; 1, 3, 25, 93, 165, 143, 49; 1, 4, 40, 197, 505, 712, 504, 150; 1, 4, 56, 364, 1274, 2548, 2912, 1768, 442; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 3..1277
Crossrefs
Programs
-
PARI
\\ See A295495 for DissectionsModCyclic() T=DissectionsModCyclic(apply(i->y, [1..12])); for(n=3, #T, for(k=1, n-2, print1(polcoeff(T[n], k), ", ")); print)