cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A295634 Triangle read by rows: T(n,k) = number of nonequivalent dissections of an n-gon into k polygons by nonintersecting diagonals up to rotation and reflection.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 1, 2, 6, 7, 4, 1, 3, 11, 24, 24, 12, 1, 3, 17, 51, 89, 74, 27, 1, 4, 26, 109, 265, 371, 259, 82, 1, 4, 36, 194, 660, 1291, 1478, 891, 228, 1, 5, 50, 345, 1477, 3891, 6249, 6044, 3176, 733, 1, 5, 65, 550, 3000, 10061, 21524, 29133, 24302, 11326, 2282
Offset: 3

Views

Author

Andrew Howroyd, Nov 24 2017

Keywords

Examples

			Triangle begins: (n >= 3, k >= 1)
1;
1, 1;
1, 1,  1;
1, 2,  3,   3;
1, 2,  6,   7,   4;
1, 3, 11,  24,  24,   12;
1, 3, 17,  51,  89,   74,   27;
1, 4, 26, 109, 265,  371,  259,  82;
1, 4, 36, 194, 660, 1291, 1478, 891, 228;
...
		

Crossrefs

Row sums are A001004.
Column k=3 is A003453.
Diagonals include A000207, A003449, A003450.

Programs

  • PARI
    \\ See A295419 for DissectionsModDihedral()
    T=DissectionsModDihedral(apply(i->y, [1..12]));
    for(n=3, #T, for(k=1, n-2, print1(polcoeff(T[n], k), ", ")); print)

A003445 Number of nonequivalent dissections of an n-gon into n-4 polygons by nonintersecting diagonals up to rotation.

Original entry on oeis.org

1, 2, 8, 40, 165, 712, 2912, 11976, 48450, 195580, 784504, 3139396, 12526605, 49902440, 198499200, 788795924, 3131945190, 12428258796, 49295766000, 195464345440, 774857314042, 3071175790232, 12171403236288, 48233597481200, 191138095393700, 757436171945952
Offset: 5

Views

Author

Keywords

Comments

In other words, the number of (n-5)-dissections of an n-gon modulo the cyclic action.
Equivalently, the number of two-dimensional faces of the (n-3)-dimensional associahedron modulo the cyclic action.
The dissection will always be composed of either 1 pentagon and n-5 triangles or 2 quadrilaterals and n-6 triangles. - Andrew Howroyd, Nov 24 2017

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A295633.

Programs

  • Maple
    C:=n->binomial(2*n,n)/(n+1);
    T31:=proc(n) local t1; global C;
    t1 :=  (n-3)^2*(n-4)*C(n-2)/(4*n*(2*n-5));
    if n mod 5 = 0 then t1:=t1+(4/5)*C(n/5-1) fi;
    if n mod 2 = 0 then t1:=t1+(n-4)*C(n/2-1)/8 fi;
    t1; end;
    [seq(T31(n),n=5..40)];
  • Mathematica
    Table[t1 = (n - 3)^2*(n - 4)*CatalanNumber[n - 2]/(4*n*(2*n - 5)); If[Mod[n, 5] == 0, t1 = t1 + (4/5)*CatalanNumber[n/5 - 1]]; If[Mod[n, 2] == 0, t1 = t1 + (n - 4)*CatalanNumber[n/2 - 1]/8]; t1, {n, 5, 20}] (* T. D. Noe, Jan 03 2013 *)
  • PARI
    \\ See A295495 for DissectionsModCyclic()
    { my(v=DissectionsModCyclic(apply(i->if(i>=3&&i<=5, y^(i-3) + O(y^3)), [1..30]))); apply(p->polcoeff(p, 2), v[5..#v]) } \\ Andrew Howroyd, Nov 24 2017

Formula

See Maple program.

Extensions

Entry revised (following Bowman and Regev) by N. J. A. Sloane, Dec 28 2012
Name clarified by Andrew Howroyd, Nov 25 2017

A220881 Number of nonequivalent dissections of an n-gon into n-3 polygons by nonintersecting diagonals up to rotation.

Original entry on oeis.org

1, 1, 4, 12, 43, 143, 504, 1768, 6310, 22610, 81752, 297160, 1086601, 3991995, 14732720, 54587280, 202997670, 757398510, 2834510744, 10637507400, 40023636310, 150946230006, 570534578704, 2160865067312, 8199711378716, 31170212479588, 118686578956272
Offset: 4

Views

Author

N. J. A. Sloane, Dec 28 2012

Keywords

Comments

This is almost identical to A003444, but has a different offset and a more precise definition.
In other words, the number of almost-triangulations of an n-gon modulo the cyclic action.
Equivalently, the number of edges of the (n-3)-dimensional associahedron modulo the cyclic action.
The dissection will always be composed of one quadrilateral and n-4 triangles. - Andrew Howroyd, Nov 25 2017
Also number of necklaces of 2 colors with 2n-4 beads and n black ones. - Wouter Meeussen, Aug 03 2002

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A295633.

Programs

  • Maple
    C:=n->binomial(2*n,n)/(n+1);
    T2:= proc(n) local t1; global C;
    t1 :=  (n-3)*C(n-2)/(2*n);
    if n mod 4 = 0 then t1:=t1+C(n/4-1)/2 fi;
    if n mod 2 = 0 then t1:=t1+C(n/2-1)/4 fi;
    t1; end;
    [seq(T2(n),n=4..40)];
  • Mathematica
    c[n_] := Binomial[2*n, n]/(n+1);
    T2[n_] := Module[{t1}, t1 = (n-3)*c[n-2]/(2*n); If[Mod[n, 4] == 0, t1 = t1 + c[n/4-1]/2]; If[Mod[n, 2] == 0, t1 = t1 + c[n/2-1]/4]; t1];
    Table[T2[n], {n, 4, 40}] (* Jean-François Alcover, Nov 23 2017, translated from Maple *)
    a[n_] := Sum[EulerPhi[d]*Binomial[(2n-4)/d, n/d], {d, Divisors[GCD[2n-4, n] ]}]/(2n-4);
    Array[a, 30, 4] (* Jean-François Alcover, Dec 02 2017, after Andrew Howroyd *)
  • PARI
    a(n) = if(n>=4, sumdiv(gcd(2*n-4, n), d, eulerphi(d)*binomial((2*n-4)/d, n/d))/(2*n-4)) \\ Andrew Howroyd, Nov 25 2017

Formula

a(n) = (1/(2n-4)) Sum_{d |(2n-4, n)} phi(d)*binomial((2n-4)/d, n/d) for n >= 4. - Wouter Meeussen, Aug 03 2002

Extensions

Name clarified by Andrew Howroyd, Nov 25 2017

A003451 Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals up to rotation.

Original entry on oeis.org

1, 4, 8, 16, 25, 40, 56, 80, 105, 140, 176, 224, 273, 336, 400, 480, 561, 660, 760, 880, 1001, 1144, 1288, 1456, 1625, 1820, 2016, 2240, 2465, 2720, 2976, 3264, 3553, 3876, 4200, 4560, 4921, 5320, 5720, 6160, 6601, 7084, 7568, 8096, 8625, 9200, 9776, 10400
Offset: 5

Views

Author

Keywords

Comments

In other words, the number of 2-dissections of an n-gon modulo the cyclic action.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A295633.

Programs

  • Magma
    [(n-4)*(2*n^2-4*n-3*(1-(-1)^n))/24: n in [5..60]]; // Vincenzo Librandi, Apr 05 2015
  • Maple
    T51:= proc(n)
    if n mod 2 = 0 then n*(n-2)*(n-4)/12;
    else (n+1)*(n-3)*(n-4)/12; fi end;
    [seq(T51(n),n=5..80)]; # N. J. A. Sloane, Dec 28 2012
  • Mathematica
    Table[((n - 4) (2 n^2 - 4 n - 3 (1 - (-1)^n)) / 24), {n, 5, 60}] (* Vincenzo Librandi, Apr 05 2015 *)
    CoefficientList[Series[(1+2*x-x^2)/((1-x)^4*(1+x)^2),{x,0,20}],x] (* Vaclav Kotesovec, Apr 05 2015 *)
  • PARI
    Vec((1 + 2*x - x^2 ) / ((1 - x)^4*(1 + x)^2) + O(x^50)) \\ Michel Marcus, Apr 04 2015
    
  • PARI
    \\ See A295495 for DissectionsModCyclic()
    { my(v=DissectionsModCyclic(apply(i->y, [1..30]))); apply(p->polcoeff(p, 3), v[5..#v]) } \\ Andrew Howroyd, Nov 24 2017
    

Formula

G.f.: x^5 * (1 + 2*x - x^2 ) / ((1 - x)^4*(1 + x)^2).
See also the Maple code for an explicit formula.
a(n) = A006584(n+3) - A027656(n). - Yosu Yurramendi, Aug 07 2008
a(n) = (n-4)*(2*n^2-4*n-3*(1-(-1)^n))/24, for n>=5. - Luce ETIENNE, Apr 04 2015

Extensions

Entry revised (following Bowman and Regev) by N. J. A. Sloane, Dec 28 2012
First formula adapted to offset by Vaclav Kotesovec, Apr 05 2015
Name clarified by Andrew Howroyd, Nov 25 2017

A380360 Number of embeddings on the sphere of Halin graphs on n unlabeled nodes up to orientation-preserving homeomorphisms.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 4, 7, 16, 32, 76, 181, 443, 1098, 2793, 7127, 18458, 48128, 126580, 334955, 892187, 2388674, 6428489, 17377599, 47174939, 128555088, 351580903, 964696719, 2655197386, 7329051870, 20284610084, 56283140111, 156537249660, 436338547904, 1218824493990, 3411297202411
Offset: 1

Views

Author

Andrew Howroyd, Jan 25 2025

Keywords

Comments

Halin graphs are planar and 3-connected and can be embedding in the sphere in essentially one way up to mirror symmetry. This sequence counts each graph as either 1 or 2 depending on if it is mirror symmetric.

Crossrefs

Row sums of A380361.
Antidiagonal sums of A295633.

Programs

A380361 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of Halin graphs on n unlabeled nodes with circuit rank k up to orientation-preserving homeomorphisms, 3 <= k <= n-1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 4, 2, 1, 0, 0, 0, 4, 8, 3, 1, 0, 0, 0, 0, 12, 16, 3, 1, 0, 0, 0, 0, 6, 40, 25, 4, 1, 0, 0, 0, 0, 0, 43, 93, 40, 4, 1, 0, 0, 0, 0, 0, 19, 165, 197, 56, 5, 1, 0, 0, 0, 0, 0, 0, 143, 505, 364, 80, 5, 1
Offset: 4

Views

Author

Andrew Howroyd, Jan 25 2025

Keywords

Comments

The circuit rank is equal to the number of leaves on the tree before it is extended into a Halin graph by joining up the leaves.
The main diagonal of the graph corresponds with the wheel graphs which have the greatest circuit rank of all Halin graphs.
T(n,k) is also the number of nonequivalent dissections of a k-gon into n-k polygons by nonintersecting diagonals up to rotation.

Examples

			Triangle begins:
  n\k| 3  4  5  6   7   8    9   10  11  12  13
-----+-----------------------------------------
   4 | 1;
   5 | 0, 1;
   6 | 0, 1, 1;
   7 | 0, 0, 1, 1;
   8 | 0, 0, 1, 2,  1;
   9 | 0, 0, 0, 4,  2,  1;
  10 | 0, 0, 0, 4,  8,  3,   1;
  11 | 0, 0, 0, 0, 12, 16,   3,   1;
  12 | 0, 0, 0, 0,  6, 40,  25,   4,  1;
  13 | 0, 0, 0, 0,  0, 43,  93,  40,  4,  1;
  14 | 0, 0, 0, 0,  0, 19, 165, 197, 56,  5,  1;
  ...
		

Crossrefs

Row sums are A380360.
Column sums are A003455.
Main diagonal is A000012.
Central coefficients are A001683.

Programs

  • PARI
    \\ See PARI Link in A380362 for program code.
    { my(T=A380361rows(12)); for(i=1, #T, print(T[i])) }

Formula

T(n,k) = A295633(k, n-k).
Showing 1-6 of 6 results.