A295662 Number of odd exponents larger than one in the canonical prime factorization of n.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
For n = 24 = 2^3 * 3^1 there are two odd exponents, but only the other is larger than 1, thus a(24) = 1. For n = 216 = 2^3 * 3^3 there are two odd exponents larger than 1, thus a(216) = 2.
Links
Crossrefs
Programs
-
Mathematica
Array[Count[FactorInteger[#][[All, -1]], ?(And[OddQ@ #, # > 1] &)] &, 105] (* _Michael De Vlieger, Nov 28 2017 *)
-
PARI
a(n) = vecsum(apply(x -> x%2 - (x==1), factor(n)[, 2])); \\ Amiram Eldar, Sep 28 2023
Formula
Additive with a(p) = 0, a(p^e) = A000035(e) if e > 1.
a(1) = 0; and for n > 1, if A067029(n) = 1, a(n) = a(A028234(n)), otherwise A000035(A067029(n)) + a(A028234(n)).
a(n) <= A295659(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p^2*(p+1)) = 0.122017493776862257491... . - Amiram Eldar, Sep 28 2023