A295664 Exponent of the highest power of 2 dividing number of divisors of n: a(n) = A007814(A000005(n)); 2-adic valuation of tau(n).
0, 1, 1, 0, 1, 2, 1, 2, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 3, 0, 2, 2, 1, 1, 3, 1, 1, 2, 2, 2, 0, 1, 2, 2, 3, 1, 3, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 3, 2, 3, 2, 2, 1, 2, 1, 2, 1, 0, 2, 3, 1, 1, 2, 3, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 0, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 0, 1, 3, 1, 3, 3, 2, 1, 2, 1, 3, 2, 1, 1, 3, 2, 1, 1, 2, 2, 4, 0
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
Table[IntegerExponent[DivisorSigma[0, n], 2], {n, 120}] (* Michael De Vlieger, Nov 28 2017 *)
-
PARI
a(n) = valuation(numdiv(n), 2); \\ Michel Marcus, Nov 30 2017
-
Python
from sympy import divisor_count def A295664(n): return (~(m:=int(divisor_count(n))) & m-1).bit_length() # Chai Wah Wu, Jul 05 2022
Formula
Additive with a(p^e) = A007814(1+e).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) =-0.223720656976344505701..., where f(x) = -x + (1-x) * Sum_{k>=1} x^(2^k-1)/(1-x^(2^k)). - Amiram Eldar, Sep 28 2023
Comments