cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295664 Exponent of the highest power of 2 dividing number of divisors of n: a(n) = A007814(A000005(n)); 2-adic valuation of tau(n).

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 2, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 3, 0, 2, 2, 1, 1, 3, 1, 1, 2, 2, 2, 0, 1, 2, 2, 3, 1, 3, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 3, 2, 3, 2, 2, 1, 2, 1, 2, 1, 0, 2, 3, 1, 1, 2, 3, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 0, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 0, 1, 3, 1, 3, 3, 2, 1, 2, 1, 3, 2, 1, 1, 3, 2, 1, 1, 2, 2, 4, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 28 2017

Keywords

Comments

In the prime factorization of n = p1^e1 * ... pk^ek, add together the number of trailing 1-bits in each exponent e when they are written in binary.

Crossrefs

Cf. A000290 (positions of zeros).

Programs

  • Mathematica
    Table[IntegerExponent[DivisorSigma[0, n], 2], {n, 120}] (* Michael De Vlieger, Nov 28 2017 *)
  • PARI
    a(n) = valuation(numdiv(n), 2); \\ Michel Marcus, Nov 30 2017
    
  • Python
    from sympy import divisor_count
    def A295664(n): return (~(m:=int(divisor_count(n))) & m-1).bit_length() # Chai Wah Wu, Jul 05 2022

Formula

Additive with a(p^e) = A007814(1+e).
a(1) = 0; for n > 1, a(n) = A007814(1+A067029(n)) + a(A028234(n)).
a(n) = A007814(A000005(n)).
a(n) >= A162642(n) >= A056169(n).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) =-0.223720656976344505701..., where f(x) = -x + (1-x) * Sum_{k>=1} x^(2^k-1)/(1-x^(2^k)). - Amiram Eldar, Sep 28 2023