cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295670 Numbers that have exactly one representation as a sum of six positive squares.

Original entry on oeis.org

6, 9, 12, 14, 15, 17, 18, 20, 22, 23, 25, 26, 27, 28, 31, 32, 34, 35, 37, 40, 43
Offset: 1

Views

Author

Robert Price, Nov 25 2017

Keywords

Comments

It appears that this sequence is finite and complete. See the von Eitzen link for a proof for the 5 positive squares case.

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

Programs

  • Mathematica
    m = 6;
    r[n_] := Reduce[xx = Array[x, m]; 0 <= x[1] && LessEqual @@ xx && AllTrue[xx, Positive] && n == Total[xx^2], xx, Integers];
    For[n = 0, n < 50, n++, rn = r[n]; If[rn[[0]] === And, Print[n, " ", rn]]] (* Jean-François Alcover, Feb 25 2019 *)
    b[n_, i_, k_, t_] := b[n, i, k, t] = If[n == 0, If[t == 0, 1, 0], If[i<1 || t<1, 0, b[n, i - 1, k, t] + If[i^2 > n, 0, b[n - i^2, i, k, t - 1]]]];
    T[n_, k_] := b[n, Sqrt[n] // Floor, k, k];
    Position[Table[T[n, 6], {n, 0, 100}], 1] - 1 // Flatten (* Jean-François Alcover, Nov 06 2020, after Alois P. Heinz in A243148 *)

Formula

A243148(a(n),6) = 1. - Alois P. Heinz, Feb 25 2019