A295862
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 9, 18, 34, 60, 104, 175, 291, 479, 784, 1278, 2078, 3373, 5470, 8863, 14354, 23239, 37616, 60879, 98520, 159425, 257972, 417425, 675426, 1092881, 1768338, 2861251, 4629622, 7490908, 12120566, 19611511, 31732115, 51343665, 83075820, 134419526, 217495388
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, so that
b(3) = 6 (least "new number");
a(2) = a(1) + a(0) + b(2) = 9;
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, ...)
-
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n];
j = 1; While[j < 6, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}] (*A295862*)
Table[b[n], {n, 0, 20}] (*complement*)
A295859
a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = -2, a(1) = 0, a(2) = 1, a(3) = 1.
Original entry on oeis.org
-2, 0, 1, 1, 8, 9, 29, 38, 91, 129, 268, 397, 761, 1158, 2111, 3269, 5764, 9033, 15565, 24598, 41699, 66297, 111068, 177365, 294577, 471942, 778807, 1250749, 2054132, 3304881, 5408165, 8713046, 14219515, 22932561, 37348684, 60281245, 98023145, 158304390
Offset: 0
-
LinearRecurrence[{1, 3, -2, -2}, {-2, 0, 1, 1}, 100]
A295998
Solution of the complementary equation a(n) = 2*a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 5, 8, 16, 23, 41, 56, 93, 124, 199, 262, 413, 541, 844, 1101, 1708, 2223, 3438, 4470, 6901, 8966, 13829, 17960, 27687, 35950, 55405, 71932, 110843, 143898, 221721, 287832, 443479, 575702, 886997, 1151444, 1774036, 2302931, 3548116, 4605907, 7096278
Offset: 0
-
mex[t_] := NestWhile[# + 1 &, 1, MemberQ[t, #] &];
a[0] = 1; a[1] = 2; b[0] = 3;
a[n_] := a[n] = 2 a[n - 2] + b[n - 2]; (* A295998 *)
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 100}];
Table[b[n], {n, 0, 30}]
A295861
a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = -2, a(1) = -1, a(2) = 0, a(3) = 1.
Original entry on oeis.org
-2, -1, 0, 1, 7, 12, 31, 51, 106, 173, 327, 532, 955, 1551, 2698, 4377, 7459, 12092, 20319, 32923, 54778, 88725, 146575, 237348, 390067, 631511, 1033866, 1673569, 2732011, 4421964, 7203127, 11657859, 18959290, 30682685, 49838583, 80652340, 130884139
Offset: 0
-
LinearRecurrence[{1, 3, -2, -2}, {-2, -1, 0, 1}, 100]
Showing 1-4 of 4 results.
Comments