A295868 Initial digit of the number of partitions of n.
1, 1, 2, 3, 5, 7, 1, 1, 2, 3, 4, 5, 7, 1, 1, 1, 2, 2, 3, 4, 6, 7, 1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 8, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1
Offset: 0
Links
- Theresa C. Anderson, Larry Rolen and Ruth Stoehr, Benford's Law for Coefficients of Modular Forms and Partition Functions, Proceedings of the American Mathematical Society, 139 (2011), pp. 1533-1541.
- Wikipedia, Benford's law
Programs
-
Mathematica
(* The first one hundred terms of the sequence *) Join[{1}, First[IntegerDigits[PartitionsP[#]]] & /@ Range[99]] f[n_] := Block[{p = PartitionsP@ n}, Floor[p/10^Floor@ Log10@ p]]; Array[f, 105, 0] (* Robert G. Wilson v, Feb 18 2018 *)
-
PARI
a(n) = digits(numbpart(n))[1]; \\ Michel Marcus, Feb 16 2018