cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295869 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 8.

Original entry on oeis.org

17, 53, 71, 89, 107, 143, 161, 179, 197, 233, 251, 269, 287, 323, 341, 359, 377, 413, 431, 449, 467, 503, 521, 539, 557, 593, 611, 629, 647, 683, 701, 719, 737, 773, 791, 809, 827, 863, 881, 899, 917, 953, 971, 989, 1007, 1043, 1061, 1079, 1097, 1133
Offset: 1

Views

Author

Gary Croft, Mar 24 2018

Keywords

Comments

Numbers == {17, 53, 71, 89} mod 90 with additive sum sequence 17{+36+18+18+18} {repeat ...}. Includes all prime numbers >5 with digital root 8.

Examples

			17+36=53; 53+18=71; 71+18=89; 89+18=107; 107+36=143.
		

Crossrefs

Intersection of A007775 and A017257.

Programs

  • GAP
    Filtered([1..1200],n->n mod 2<>0 and n mod 3 <>0 and n mod 5<>0 and n-9*Int((n-1)/9)=8); # Muniru A Asiru, May 30 2018
  • Maple
    select(n->modp(n,2)<>0 and modp(n,3)<>0 and modp(n,5)<>0 and n-9*floor((n-1)/9)=8,[$1..1200]); # Muniru A Asiru, May 30 2018
  • PARI
    Vec(x*(17 + 36*x + 18*x^2 + 18*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 26 2018
    

Formula

Numbers == {17, 53, 71, 89} mod 90.
From Colin Barker, Mar 26 2018: (Start)
G.f.: x*(17 + 36*x + 18*x^2 + 18*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = (5 + 9*(-1)^n - (9+9*i)*(-i)^n - (9-9*i)*i^n + 90*n) / 4, where i=sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)