A295869 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 8.
17, 53, 71, 89, 107, 143, 161, 179, 197, 233, 251, 269, 287, 323, 341, 359, 377, 413, 431, 449, 467, 503, 521, 539, 557, 593, 611, 629, 647, 683, 701, 719, 737, 773, 791, 809, 827, 863, 881, 899, 917, 953, 971, 989, 1007, 1043, 1061, 1079, 1097, 1133
Offset: 1
Examples
17+36=53; 53+18=71; 71+18=89; 89+18=107; 107+36=143.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
GAP
Filtered([1..1200],n->n mod 2<>0 and n mod 3 <>0 and n mod 5<>0 and n-9*Int((n-1)/9)=8); # Muniru A Asiru, May 30 2018
-
Maple
select(n->modp(n,2)<>0 and modp(n,3)<>0 and modp(n,5)<>0 and n-9*floor((n-1)/9)=8,[$1..1200]); # Muniru A Asiru, May 30 2018
-
PARI
Vec(x*(17 + 36*x + 18*x^2 + 18*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 26 2018
Formula
Numbers == {17, 53, 71, 89} mod 90.
From Colin Barker, Mar 26 2018: (Start)
G.f.: x*(17 + 36*x + 18*x^2 + 18*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = (5 + 9*(-1)^n - (9+9*i)*(-i)^n - (9-9*i)*i^n + 90*n) / 4, where i=sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)
Comments