cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A300058 a(n) = binomial(3*n,n)/(2*Pi)*Integral_{x=0..2*Pi} (12*cos^2(x)*sin(x) + 20*sin^3(x))^(2*n) dx.

Original entry on oeis.org

1, 492, 707220, 1298204880, 2654173160100, 5765723073622512, 13021894087331233104, 30217387890886676251200, 71532102917478013611243300, 171944976047709681477985038000, 418347201888204996027087975427920
Offset: 0

Views

Author

Bradley Klee, Feb 23 2018

Keywords

Comments

Compare with A295870. The series expansion "T(x)=2*Pi*sqrt(3/5)*Sum_{n>=0} a_n*(x/25)^n" determines the period T of anharmonic oscillation along a contour of the Hamiltonian energy surface "x=2H=(5/3)*p^2+q^2+4*(p^2+q^2)*q,0
The period-energy function T(x) satisfies the Picard-Fuchs equation "(2460+28512*x+2239488*x^2)*T(x)-(125-24840*x-1423008*x^2-20155392*x^3)*T'(x)+(-125*x+1620*x^2+1189728*x^3+10077696 x^4)*T''(x)", also the P.F.Eq. of A295870 under transformation x->x'=1/108-x.
A300057 has a similar definition to A005721, with a couple of extra integers appearing in the integrand. This makes a nice analogy between real and complex periods A295870, A300058. Second-order recurrences with polynomial coefficients define both sequences.

Crossrefs

Cf. A002894, A113424, A006480, A000897. Factors: A005809, A300057. Real Period: A295870.

Programs

  • Maple
    a := n -> 36^n*(3*n)!/n!^3*hypergeom([-2*n, n+1/2], [n+1], -2/3):
    seq(simplify(a(n)), n=0..10); # Peter Luschny, Apr 19 2018
  • Mathematica
    c1=12*(-230+2259*n-3933*n^2+1863*n^3);c2=5248800*(n-5/3)*(n-4/3)*(n-1/9);c3=9*n^2*(n-10/9);a[0]=1;a[1]=492;a[n0_]:=ReplaceAll[(c1/c3)*a[n0-1]+(c2/c3)*a[n0-2],n->n0];
    b[NN_]:=Expand[Total[Flatten[#]]&/@Table[Binomial[3*n,n]*Binomial[2*n,k2]*Binomial[2*n,k1]*Binomial[2*n,3*n-k1-k2]*((4+Sqrt[15])^(2*n-k1))*((4-Sqrt[15])^(2*n-k2)),{n,0,NN},{k1,0,2*n},{k2,0,2*n}]]; ({#,SameQ[#,a/@Range[0,10]]}&@b[10])[[1]]
    Table[Binomial[3*n, n] * SeriesCoefficient[(1 + 9*z + 9*z^2 + z^3)^(2*n), {z, 0, 3*n}], {n, 0, 15}] (* Vaclav Kotesovec, Apr 18 2018 *)

Formula

a(n) = A005809(n)*A300057(n).
a(n) = Sum_{k1=0..2n} Sum_{k2=0..2n} binomial(3*n,n)*binomial(2*n,k2)*binomial(2*n,k1)*binomial(2*n,3*n-k1-k2)*((4+sqrt(15))^(2*n-k1))*((4-sqrt(15))^(2*n-k2))
a(0) = 1; a(1) = 492; a(n):=(c1/c3)*a(n-1)+(c2/c3)*a(n-2); with
c1 = 12*(-230+2259*n-3933*n^2+1863*n^3);
c2 = 5248800*(n-5/3)*(n-4/3)*(n-1/9);
c3 = 9*n^2*(n-10/9);
a(n) ~ 2^(2*n - 1) * 3^(3*n - 1/2) * 5^(2*n + 1/2) / (Pi*n). - Vaclav Kotesovec, Apr 18 2018

A300057 Coefficient of z^(3*n) in the expansion of (1 + 9*z + 9*z^2 + z^3)^(2*n).

Original entry on oeis.org

1, 164, 47148, 15454820, 5361965980, 1919987703504, 701459496193236, 259867456921970040, 97260263038893462300, 36686877800581349096240, 13924013746979490475444528, 5311128944356277793155688612, 2034235241375650519750351973188
Offset: 0

Author

Bradley Klee, Feb 23 2018

Keywords

Crossrefs

Programs

  • GAP
    List([0..15],n->6^(2*n)Sum([0..2*n],k->Binomial(2*n,k)*Binomial(2*(n+k),n+k)*(1/6)^k)); # Muniru A Asiru, Apr 07 2018
  • Mathematica
    c1=16*(n-1/2)*(-230+2259*n-3933*n^2+1863*n^3);c2=1036800*(n-1)*(n-3/2)*(n-1/2)*(n-1/9);c3=81*n*(n-2/3)*(n-1/3)*(n-10/9);a[0]=1;a[1]=164;a[n0_]:=ReplaceAll[(c1/c3)*a[n0-1]+(c2/c3)*a[n0-2],n->n0]
    b[NN_]:=Expand[Total[Flatten[#]]&/@Table[Binomial[2*n,k2]*Binomial[2*n,k1]*Binomial[2*n, 3*n-k1-k2]*(4 + Sqrt[15])^(2*n-k1)*(4-Sqrt[15])^(2*n-k2),{n,0,NN},{k1,0,2*n},{k2,0,2*n}]]
    ({#,SameQ[Coefficient[(1+9*z+9*z^2+z^3)^(2*#),z,3*#]&/@Range[0,10],#],SameQ[a/@Range[0,10],#]}&@b[10])[[1]]
    Table[SeriesCoefficient[(1 + 9*z + 9*z^2 + z^3)^(2*n), {z, 0, 3*n}], {n, 0, 15}] (* Vaclav Kotesovec, Apr 18 2018 *)
  • PARI
    a(n) = polcoeff((1 + 9*z + 9*z^2 + z^3)^(2*n), 3*n); \\ Michel Marcus, Mar 06 2018
    

Formula

a(n) = 1/(2*Pi)*Integral_{0..2*Pi}(12*cos^2(x)*sin(x) + 20*sin^3(x))^(2*n) dx.
a(n) = Sum_{k1=0..2*n} Sum_{k2=0..2*n} binomial(2*n,k1)*binomial(2*n,k2)*binomial(2*n,3*n-k1-k2)*((4-sqrt(15))^(2*n-k1))*((4+sqrt(15))^(2*n-k2)).
a(n) = (c1/c3)*a(n-1)+(c2/c3)*a(n-2); with a(0)=1; a(1)=164; and
c1=16*(n-1/2)*(-230+2259*n-3933*n^2+1863*n^3);
c2=1036800*(n-1)*(n-3/2)*(n-1/2)*(n-1/9);
c3=81*n*(n-2/3)*(n-1/3)*(n-10/9).
From Wolfdieter Lang, Apr 06 2018: (Start)
a(n) = 4^(2*n)*(2/Pi)*Integral_{0..Pi/2} sin(x)^(2*n)*(3 + 2*sin(x)^2)^(2*n) dx. With the binomial formula and integrals over even powers of sin(x) this becomes
a(n) = 6^(2*n)*Sum_{k=0..2*n} binomial(2*n, k)*binomial(2*(n+k), n+k)*(1/6)^k = 6^(2*n)*binomial(2*n, n)*hypergeometric([-2*n, n+1/2], [n+1], -2/3). (End)
a(n) ~ 2^(4*n) * 5^(2*n + 1/2) / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 18 2018
Showing 1-2 of 2 results.