A295872 Decimal expansion of the first Ramanujan trigonometric constant (negated).
7, 1, 7, 5, 1, 5, 0, 7, 9, 6, 4, 9, 9, 3, 9, 9, 3, 5, 1, 2, 0, 9, 5, 0, 5, 5, 9, 1, 7, 7, 9, 8, 6, 1, 1, 2, 1, 0, 8, 4, 5, 7, 6, 0, 1, 1, 5, 5, 2, 5, 0, 5, 7, 2, 1, 8, 3, 3, 0, 2, 8, 3, 0, 0, 2, 7, 9, 8, 1, 4, 6, 5, 0
Offset: 0
Examples
r_1 =-0.7175150796499399351209505591779861121084576011552505721833028300279814650...
References
- B. Bajorska-Harapinska, M. Pleszczynski, D. Slota and R. Witula, A few properties of Ramanujan cubic polynomials and Ramanujan cubic polynomials of the second kind, in book: Selected Problems on Experimental Mathematics, Gliwice 2017, pp. 181-200.
- B. C. Berndt, Y. S. Choi, and S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc. in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q524, JIMS VI, 1914).
- S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.
Links
- B. C. Berndt, H. H. Chan, and L. C. Zhang, Radicals and units in Ramanujan's work, Acta Arith., 87 (1988), 145-158.
- B. C. Berndt and S. Bhargava, Ramanujan - for Lowbrows, Amer. Math. Monthly, 100, no. 7, 1993, 644-656.
- Vladimir Shevelev, Three Ramanujan's formulas, Kvant 6 (1988), 52-55 in Russian. English translation: Kvant Selecta 14 (1999), 139-144.
- Vladimir Shevelev, On Ramanujan cubic polynomials, arXiv:0711.3420 [math.AC], 2007; South East Asian J. Math. & Math. Sci. 8 (2009), 113-122.
Programs
-
Maple
use RealDomain in solve(4*x^9 - 30*x^6 + 75*x^3 + 32 = 0) end use: evalf(%, 79); # Peter Luschny, Dec 13 2017
-
Mathematica
RealDigits[(-(5 - 3*7^(1/3))/2)^(1/3), 10, 111][[1]] (* Robert G. Wilson v, Dec 13 2017 *)
-
PARI
-((3*7^(1/3)-5)/2)^(1/3) \\ Michel Marcus, Dec 10 2017
Formula
r_1 = ((5 - 3*7^(1/3))/2)^(1/3).
Extensions
More terms from Michel Marcus, Dec 09 2017
Comments