cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295879 Multiplicative with a(p) = 1, a(p^e) = prime(e-1) if e > 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 2, 2, 1, 1, 3, 2, 1, 1, 2, 3, 2, 1, 13
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2017

Keywords

Comments

This sequence can be used as a filter. It matches at least to the following sequences related to the counting of various non-unitary prime divisors:
For all i, j:
a(i) = a(j) => A056170(i) = A056170(j), as A056170(n) = A001222(a(n)).
a(i) = a(j) => A162641(i) = A162641(j).
a(i) = a(j) => A295659(i) = A295659(j).
a(i) = a(j) => A295662(i) = A295662(j).
a(i) = a(j) => A295883(i) = A295883(j), as A295883(n) = A007949(a(n)).
a(i) = a(j) => A295884(i) = A295884(j).
An encoding of the prime signature of A057521(n), the powerful part of n. - Peter Munn, Apr 06 2024

Crossrefs

Differs from A000688 for the first time at n=128, where a(128) = 13, while A000688(128) = 15.

Programs

  • Mathematica
    Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; p > 0 :> Which[p == 1, 1, e == 1, 1, True, Prime[e - 1]]] &, 128] (* Michael De Vlieger, Nov 29 2017 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 1, prime(f[i,2]-1)));} \\ Amiram Eldar, Nov 18 2022

Formula

a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product A008578(e(i)).
a(n) = A064989(A181819(n)).
a(n) = A181819(A003557(n)). - Antti Karttunen, Apr 03 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/p^2 + Sum_{k>=1} (prime(k+1)-prime(k))/p^(k+2)) = 2.208... . - Amiram Eldar, Nov 18 2022