cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A381455 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into a multiset of constant multisets.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2025

Keywords

Comments

First differs from A000688 at a(144) = 9, A000688(144) = 10.
First differs from A295879 at a(128) = 15, A295879(128) = 13.
Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a factorization of n into prime powers > 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Multisets of constant multisets are generally not transitive. For example, we have arrows: {{1,1},{2}}: {1,1,2} -> {2,2} and {{2,2}}: {2,2} -> {4}, but there is no multiset of constant multisets {1,1,2} -> {4}.

Examples

			The prime indices of 36 are {1,1,2,2}, with the following 4 partitions into a multiset of constant multisets:
  {{1,1},{2,2}}
  {{1},{1},{2,2}}
  {{2},{2},{1,1}}
  {{1},{1},{2},{2}}
with block-sums: {2,4}, {1,1,4}, {2,2,2}, {1,1,2,2}, which are all different, so a(36) = 4.
The prime indices of 144 are {1,1,1,1,2,2}, with the following 10 partitions into a multiset of constant multisets:
  {{2,2},{1,1,1,1}}
  {{1},{2,2},{1,1,1}}
  {{2},{2},{1,1,1,1}}
  {{1,1},{1,1},{2,2}}
  {{1},{1},{1,1},{2,2}}
  {{1},{2},{2},{1,1,1}}
  {{2},{2},{1,1},{1,1}}
  {{1},{1},{1},{1},{2,2}}
  {{1},{1},{2},{2},{1,1}}
  {{1},{1},{1},{1},{2},{2}}
with block-sums: {4,4}, {1,3,4}, {2,2,4}, {2,2,4}, {1,1,2,4}, {1,2,2,3}, {2,2,2,2}, {1,1,1,1,4}, {1,1,2,2,2}, {1,1,1,1,2,2}, of which 9 are distinct, so a(144) = 9.
The a(n) partitions for n = 4, 8, 16, 32, 36, 64, 72, 128:
  (2)   (3)    (4)     (5)      (42)    (6)       (43)     (7)
  (11)  (21)   (22)    (32)     (222)   (33)      (322)    (43)
        (111)  (31)    (41)     (411)   (42)      (421)    (52)
               (211)   (221)    (2211)  (51)      (2221)   (61)
               (1111)  (311)            (222)     (4111)   (322)
                       (2111)           (321)     (22111)  (331)
                       (11111)          (411)              (421)
                                        (2211)             (511)
                                        (3111)             (2221)
                                        (21111)            (3211)
                                        (111111)           (4111)
                                                           (22111)
                                                           (31111)
                                                           (211111)
                                                           (1111111)
		

Crossrefs

Before taking sums we had A000688.
Positions of 1 are A005117.
There is a chain from the prime indices of n to a singleton iff n belongs to A300273.
The lower version is A381453.
For distinct blocks we have A381715, before sum A050361.
For distinct block-sums we have A381716, before sums A381635 (zeros A381636).
Other multiset partitions of prime indices:
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For strict multiset partitions (A045778) see A381452.
- For set multipartitions (A050320) see A381078 (upper), A381454 (lower).
- For set systems (A050326) see A381441 (upper).
- For strict multiset partitions with distinct sums (A321469) see A381637.
- For set systems with distinct sums (A381633) see A381634, A293243.
More on multiset partitions into constant blocks: A006171, A279784, A295935.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sqfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
    Table[Length[Union[Sort[hwt/@#]&/@sqfacs[n]]],{n,100}]

Formula

a(s) = 1 for any squarefree number s.
a(p^k) = A000041(k) for any prime p.

A351944 a(n) = A003557(A181819(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 3, 1, 4, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Apr 02 2022

Keywords

Crossrefs

Programs

Formula

a(n) = A181819(n) / A329601(n) = A003557(A181819(n)).

A295878 Multiplicative with a(p^(2e)) = 1, a(p^(2e-1)) = prime(e).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 3, 1, 4, 2, 2, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 6, 1, 4, 3, 2, 2, 8, 2, 5, 4, 4, 4, 1, 2, 4, 4, 6, 2, 8, 2, 2, 2, 4, 2, 2, 1, 2, 4, 2, 2, 6, 4, 6, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 3, 2, 4, 2, 2, 4, 8, 2, 2, 1, 4, 2, 4, 4, 4, 4, 6, 2, 4, 4, 2, 4, 4, 4, 10, 2, 2, 2, 1, 2, 8, 2, 6, 8, 4, 2, 3, 2, 8, 4, 2, 2, 8, 4, 2, 2, 4, 4, 12
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2017

Keywords

Comments

This sequence can be used as a filter. It matches at least to the following sequence, as for all i, j:
a(i) = a(j) => A162642(i) = A162642(j), as A162642(n) = A001222(a(n)).
a(i) = a(j) => A056169(i) = A056169(j), as A056169(n) = A007814(a(n)).
a(i) = a(j) => A295883(i) = A295883(j), as A295883(n) = A007949(a(n)).
a(i) = a(j) => A295662(i) = A295662(j).
a(i) = a(j) => A295664(i) = A295664(j).

Crossrefs

Programs

  • Mathematica
    Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; p > 0 :> Which[p == 1, 1, EvenQ@ e, 1, True, Prime[(e + 1)/2]]] &, 120] (* Michael De Vlieger, Nov 29 2017 *)

Formula

a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime((e(i)+1)/2)^A000035(e(i)).
Showing 1-4 of 4 results.