cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A351945 a(n) = A342001(A181819(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 5, 1, 2, 2, 1, 1, 5, 1, 5, 2, 2, 1, 7, 1, 2, 1, 5, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 7, 1, 3, 1, 5, 5, 2, 1, 9, 1, 5, 2, 5, 1, 7, 2, 7, 2, 2, 1, 8, 1, 2, 5, 1, 2, 3, 1, 5, 2, 3, 1, 8, 1, 2, 5, 5, 2, 3, 1, 9, 1, 2, 1, 8, 2, 2, 2, 7, 1, 8, 2, 5, 2, 2, 2, 13, 1, 5, 5, 2, 1, 3, 1, 7, 3
Offset: 1

Views

Author

Antti Karttunen, Apr 02 2022

Keywords

Crossrefs

Programs

Formula

a(n) = A342001(A181819(n)) = A351942(n) / A351944(n).

A351942 Arithmetic derivative of A181819(n), where A181819(n) = Product prime(e(i)) when n = Product prime(i)^e(i).

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 5, 1, 4, 4, 1, 1, 5, 1, 5, 4, 4, 1, 7, 1, 4, 1, 5, 1, 12, 1, 1, 4, 4, 4, 6, 1, 4, 4, 7, 1, 12, 1, 5, 5, 4, 1, 9, 1, 5, 4, 5, 1, 7, 4, 7, 4, 4, 1, 16, 1, 4, 5, 1, 4, 12, 1, 5, 4, 12, 1, 8, 1, 4, 5, 5, 4, 12, 1, 9, 1, 4, 1, 16, 4, 4, 4, 7, 1, 16, 4, 5, 4, 4, 4, 13, 1, 5, 5, 6, 1, 12
Offset: 1

Views

Author

Antti Karttunen, Apr 02 2022

Keywords

Crossrefs

Coincides with A351943 on the positions given by A130091.

Programs

  • Mathematica
    {0}~Join~Array[If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &[Apply[Times, Prime[FactorInteger[#][[All, -1]]]]] &, 101, 2] (* Michael De Vlieger, Apr 03 2022 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A351942(n) = A003415(A181819(n));

Formula

a(n) = A003415(A181819(n)).
a(n) = A351944(n) * A351945(n).

A295879 Multiplicative with a(p) = 1, a(p^e) = prime(e-1) if e > 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 2, 2, 1, 1, 3, 2, 1, 1, 2, 3, 2, 1, 13
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2017

Keywords

Comments

This sequence can be used as a filter. It matches at least to the following sequences related to the counting of various non-unitary prime divisors:
For all i, j:
a(i) = a(j) => A056170(i) = A056170(j), as A056170(n) = A001222(a(n)).
a(i) = a(j) => A162641(i) = A162641(j).
a(i) = a(j) => A295659(i) = A295659(j).
a(i) = a(j) => A295662(i) = A295662(j).
a(i) = a(j) => A295883(i) = A295883(j), as A295883(n) = A007949(a(n)).
a(i) = a(j) => A295884(i) = A295884(j).
An encoding of the prime signature of A057521(n), the powerful part of n. - Peter Munn, Apr 06 2024

Crossrefs

Differs from A000688 for the first time at n=128, where a(128) = 13, while A000688(128) = 15.

Programs

  • Mathematica
    Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; p > 0 :> Which[p == 1, 1, e == 1, 1, True, Prime[e - 1]]] &, 128] (* Michael De Vlieger, Nov 29 2017 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 1, prime(f[i,2]-1)));} \\ Amiram Eldar, Nov 18 2022

Formula

a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product A008578(e(i)).
a(n) = A064989(A181819(n)).
a(n) = A181819(A003557(n)). - Antti Karttunen, Apr 03 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/p^2 + Sum_{k>=1} (prime(k+1)-prime(k))/p^(k+2)) = 2.208... . - Amiram Eldar, Nov 18 2022

A353524 A003557 applied to the prime shadow of primorial base exp-function: a(n) = A003557(A181819(A276086(n))).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 4, 1, 2, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 4, 1, 2, 2, 4, 4, 8, 2, 4, 1, 2, 2, 4, 3, 6, 1, 2, 2, 4, 1, 2, 1, 2, 2, 4, 1, 2, 1, 1, 1, 2, 3, 3, 1, 2, 2, 4, 3, 6, 3, 3, 3, 6, 9, 9, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 4, 1, 2, 1, 1, 1, 2
Offset: 0

Views

Author

Antti Karttunen, Apr 30 2022

Keywords

Crossrefs

Programs

  • PARI
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A353524(n) = A003557(A181819(A276086(n)));

Formula

For n > 0, a(n) = A353576(n) / A353577(n).
Showing 1-5 of 5 results.