cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A342001 Arithmetic derivative without its inherited divisor; the arithmetic derivative of n divided by A003557(n), which is a common divisor of both n and A003415(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 3, 2, 7, 1, 8, 1, 9, 8, 4, 1, 7, 1, 12, 10, 13, 1, 11, 2, 15, 3, 16, 1, 31, 1, 5, 14, 19, 12, 10, 1, 21, 16, 17, 1, 41, 1, 24, 13, 25, 1, 14, 2, 9, 20, 28, 1, 9, 16, 23, 22, 31, 1, 46, 1, 33, 17, 6, 18, 61, 1, 36, 26, 59, 1, 13, 1, 39, 11, 40, 18, 71, 1, 22, 4, 43, 1, 62, 22, 45, 32, 35, 1, 41, 20
Offset: 1

Views

Author

Antti Karttunen, Feb 28 2021

Keywords

Comments

See also the scatter plot of A342002 that seems to reveal some interesting internal structure in this sequence, not fully explained by the regularity of primorial base expansion used in the latter sequence. - Antti Karttunen, May 09 2022

Crossrefs

Cf. A342002 [= a(A276086(n))], A342463 [= a(A342456(n))], A351945 [= a(A181819(n))], A353571 [= a(A003961(n))].
Cf. A346485 (Möbius transform), A347395 (convolution with Liouville's lambda), A347961 (with itself), and A347234, A347235, A347954, A347959, A347963, A349396, A349612 (for convolutions with other sequences).
Cf. A007947.

Programs

  • Mathematica
    Array[#1/#2 & @@ {If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &@ Abs[#], #/Times @@ FactorInteger[#][[All, 1]]} &, 91] (* Michael De Vlieger, Mar 11 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A342001(n) = (A003415(n) / A003557(n));
    
  • Python
    from math import prod
    from sympy import factorint
    def A342001(n):
        q = prod(f:=factorint(n))
        return sum(q*e//p for p, e in f.items()) # Chai Wah Wu, Nov 04 2022

Formula

a(n) = A003415(n) / A003557(n).
For all n >= 0, a(A276086(n)) = A342002(n).
a(n) = A342414(n) * A342416(n) = A342459(n) * A342919(n). - Antti Karttunen, Apr 30 2022
Dirichlet g.f.: Dirichlet g.f. of A007947 * Sum_{p prime} p^s/((p^s-1)*(p^s+p-1)) = zeta(s) * Product_{p prime} (1+p^(1-s)-p^(-s)) * Sum_{p prime} p^s/((p^s-1)*(p^s+p-1)). - Sebastian Karlsson, May 05 2022
Sum_{k=1..n} a(k) ~ c * A065464 * Pi^2 * n^2 / 12, where c = Sum_{j>=2} (1/2 + (-1)^j * (Fibonacci(j) - 1/2))*PrimeZetaP(j) = 0.4526952873143153104685540856936425315834753528741817723313791528384... - Vaclav Kotesovec, May 09 2022

A276076 Factorial base exp-function: digits in factorial base representation of n become the exponents of successive prime factors whose product a(n) is.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450, 3675, 7350, 11025, 22050, 6125, 12250, 18375, 36750, 55125, 110250, 343
Offset: 0

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Comments

These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the digit in one-based position k of the factorial base representation of n. See the examples.

Examples

			   n  A007623   polynomial     encoded as             a(n)
   -------------------------------------------------------
   0       0    0-polynomial   (empty product)        = 1
   1       1    1*x^0          prime(1)^1             = 2
   2      10    1*x^1          prime(2)^1             = 3
   3      11    1*x^1 + 1*x^0  prime(2) * prime(1)    = 6
   4      20    2*x^1          prime(2)^2             = 9
   5      21    2*x^1 + 1*x^0  prime(2)^2 * prime(1)  = 18
   6     100    1*x^2          prime(3)^1             = 5
   7     101    1*x^2 + 1*x^0  prime(3) * prime(1)    = 10
and:
  23     321  3*x^2 + 2*x + 1  prime(3)^3 * prime(2)^2 * prime(1)
                                      = 5^3 * 3^2 * 2 = 2250.
		

Crossrefs

Cf. A276075 (a left inverse).
Cf. A276078 (same terms in ascending order).
Cf. also A275733, A275734, A275735, A275725 for other such encodings of factorial base related polynomials, and A276086 for a primorial base analog.

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, r, p = 2, q = 1}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, q *= p^r; p = NextPrime[p]; m++]; q]; Array[a, 100, 0] (* Amiram Eldar, Feb 07 2024 *)

Formula

a(0) = 1, for n >= 1, a(n) = A275733(n) * a(A276009(n)).
Or: for n >= 1, a(n) = a(A257687(n)) * A000040(A084558(n))^A099563(n).
Other identities.
For all n >= 0:
A276075(a(n)) = n.
A001221(a(n)) = A060130(n).
A001222(a(n)) = A034968(n).
A051903(a(n)) = A246359(n).
A048675(a(n)) = A276073(n).
A248663(a(n)) = A276074(n).
a(A007489(n)) = A002110(n).
a(A059590(n)) = A019565(n).
For all n >= 1:
a(A000142(n)) = A000040(n).
a(A033312(n)) = A076954(n-1).
From Antti Karttunen, Apr 18 2022: (Start)
a(n) = A276086(A351576(n)).
A276085(a(n)) = A351576(n)
A003557(a(n)) = A351577(n).
A003415(a(n)) = A351950(n).
A069359(a(n)) = A351951(n).
A083345(a(n)) = A342001(a(n)) = A351952(n).
A351945(a(n)) = A351954(n).
A181819(a(n)) = A275735(n).
(End)
lambda(a(n)) = A262725(n+1), where lambda is Liouville's function, A008836. - Antti Karttunen and Peter Munn, Aug 09 2024

Extensions

Name changed by Antti Karttunen, Apr 18 2022

A351942 Arithmetic derivative of A181819(n), where A181819(n) = Product prime(e(i)) when n = Product prime(i)^e(i).

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 5, 1, 4, 4, 1, 1, 5, 1, 5, 4, 4, 1, 7, 1, 4, 1, 5, 1, 12, 1, 1, 4, 4, 4, 6, 1, 4, 4, 7, 1, 12, 1, 5, 5, 4, 1, 9, 1, 5, 4, 5, 1, 7, 4, 7, 4, 4, 1, 16, 1, 4, 5, 1, 4, 12, 1, 5, 4, 12, 1, 8, 1, 4, 5, 5, 4, 12, 1, 9, 1, 4, 1, 16, 4, 4, 4, 7, 1, 16, 4, 5, 4, 4, 4, 13, 1, 5, 5, 6, 1, 12
Offset: 1

Views

Author

Antti Karttunen, Apr 02 2022

Keywords

Crossrefs

Coincides with A351943 on the positions given by A130091.

Programs

  • Mathematica
    {0}~Join~Array[If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &[Apply[Times, Prime[FactorInteger[#][[All, -1]]]]] &, 101, 2] (* Michael De Vlieger, Apr 03 2022 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A351942(n) = A003415(A181819(n));

Formula

a(n) = A003415(A181819(n)).
a(n) = A351944(n) * A351945(n).

A351944 a(n) = A003557(A181819(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 3, 1, 4, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Apr 02 2022

Keywords

Crossrefs

Programs

Formula

a(n) = A181819(n) / A329601(n) = A003557(A181819(n)).

A351954 Arithmetic derivative without its inherited divisor applied to the prime shadow of the factorial base exp-function: a(n) = A342001(A181819(A276076(n))).

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 2, 2, 3, 5, 8, 1, 5, 5, 8, 2, 7, 1, 7, 7, 12, 8, 31, 1, 2, 2, 3, 5, 8, 2, 3, 3, 4, 8, 11, 5, 8, 8, 11, 7, 10, 7, 12, 12, 17, 31, 46, 1, 5, 5, 8, 2, 7, 5, 8, 8, 11, 7, 10, 2, 7, 7, 10, 3, 9, 8, 31, 31, 46, 13, 41, 1, 7, 7, 12, 8, 31, 7, 12, 12, 17, 31, 46, 8, 31, 31, 46, 13, 41, 2, 9, 9, 14, 11
Offset: 0

Views

Author

Antti Karttunen, Apr 02 2022

Keywords

Comments

Compare the scatter plot to those of A275735, A353575 and of A353577. - Antti Karttunen, Apr 30 2022

Crossrefs

Programs

Formula

a(n) = A342001(A275735(n)) = A351945(A276076(n)).
a(n) = A353577(A351576(n)). - Antti Karttunen, Apr 30 2022

Extensions

Verbal description added to the definition by Antti Karttunen, Apr 30 2022

A353577 Arithmetic derivative without its inherited divisor applied to the prime shadow of the primorial base exp-function: a(n) = A342001(A181819(A276086(n))).

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 2, 2, 3, 5, 8, 1, 5, 5, 8, 2, 7, 1, 7, 7, 12, 8, 31, 1, 9, 9, 16, 10, 41, 1, 2, 2, 3, 5, 8, 2, 3, 3, 4, 8, 11, 5, 8, 8, 11, 7, 10, 7, 12, 12, 17, 31, 46, 9, 16, 16, 23, 41, 62, 1, 5, 5, 8, 2, 7, 5, 8, 8, 11, 7, 10, 2, 7, 7, 10, 3, 9, 8, 31, 31, 46, 13, 41, 10, 41, 41, 62, 17, 55, 1, 7, 7, 12, 8
Offset: 0

Views

Author

Antti Karttunen, Apr 30 2022

Keywords

Crossrefs

Cf. A060735 (positions of 1's).
Cf. also A342002, A351954 (similar or analogous definitions).

Programs

Formula

a(n) = A353576(n) / A353524(n).
Showing 1-6 of 6 results.