A381454
Number of multisets that can be obtained by choosing a strict integer partition of each prime index of n and taking the multiset union.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 4, 2, 2, 1, 5, 1, 6, 2, 2, 3, 8, 1, 3, 4, 1, 2, 10, 2, 12, 1, 3, 5, 4, 1, 15, 6, 4, 2, 18, 2, 22, 3, 2, 8, 27, 1, 3, 3, 5, 4, 32, 1, 6, 2, 6, 10, 38, 2, 46, 12, 2, 1, 8, 3, 54, 5, 8, 4, 64, 1, 76, 15, 3, 6, 6, 4, 89, 2, 1
Offset: 1
The a(25) = 3 multisets are: {3,3}, {1,2,3}, {1,1,2,2}.
Multiset partitions of prime indices:
- For strict multiset partitions with distinct sums (
A321469) see
A381637.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A358914 counts twice-partitions into distinct strict partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A066328,
A213242,
A213385,
A213427,
A293511,
A299200,
A299201,
A299202,
A300385,
A317142.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@prix[n]]]],{n,100}]
A381636
Numbers whose prime indices cannot be partitioned into constant blocks with distinct sums.
Original entry on oeis.org
12, 60, 63, 84, 120, 126, 132, 156, 204, 228, 252, 276, 300, 315, 325, 348, 372, 420, 444, 492, 504, 516, 560, 564, 588, 630, 636, 650, 660, 693, 708, 720, 732, 780, 804, 819, 840, 852, 876, 924, 931, 948, 975, 996, 1008, 1020, 1068, 1071, 1092, 1140, 1164
Offset: 1
The prime indices of 300 are {1,1,2,3,3}, with partitions into constant blocks:
{{2},{1,1},{3,3}}
{{1},{1},{2},{3,3}}
{{2},{3},{3},{1,1}}
{{1},{1},{2},{3},{3}}
but none of these has distinct block-sums, so 300 is in the sequence.
The terms together with their prime indices begin:
12: {1,1,2}
60: {1,1,2,3}
63: {2,2,4}
84: {1,1,2,4}
120: {1,1,1,2,3}
126: {1,2,2,4}
132: {1,1,2,5}
156: {1,1,2,6}
204: {1,1,2,7}
228: {1,1,2,8}
252: {1,1,2,2,4}
276: {1,1,2,9}
300: {1,1,2,3,3}
These are the positions of 0 in
A381635, after taking block-sums
A381716.
Partitions of this type are counted by
A381717.
For strict instead of constant blocks we have
A381806, zeros of
A381633.
For equal instead of distinct block-sums we have
A381871.
A050361 counts multiset partitions into distinct constant blocks, after sums
A381715.
Cf.
A000720,
A001222,
A005117,
A050320,
A059404,
A213242,
A293243,
A299202,
A300385,
A381078,
A381454,
A381634.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
Select[Range[100],Select[pfacs[#],UnsameQ@@hwt/@#&]=={}&]
A381635
Number of ways to partition the prime indices of n into constant blocks with distinct sums.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 0, 1, 1, 0, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1
Offset: 1
The a(432) = 3 multiset partitions:
{{2,2,2},{1,1,1,1}}
{{1},{1,1,1},{2,2,2}}
{{1},{2},{2,2},{1,1,1}}
Note {{2},{2,2},{1,1,1,1}} is not included, as it does not have distinct block-sums.
For distinct blocks instead of sums we have
A050361, after sums
A381715.
Taking block-sums (and sorting) gives
A381716.
Other multiset partitions of prime indices:
A003963 gives product of prime indices.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A213242,
A213385,
A293511,
A299202,
A300385,
A317142,
A381870.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
Table[Length[Select[pfacs[n],UnsameQ@@hwt/@#&]],{n,100}]
A381441
Number of multisets that can be obtained by partitioning the prime indices of n into a set of sets (set system) and taking their sums.
Original entry on oeis.org
1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 5, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 5, 1, 1, 2, 5, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1
The prime indices of 60 are {1,1,2,3}, with partitions into sets of sets:
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1},{2},{1,3}}
{{1},{3},{1,2}}
with block-sums: {1,6}, {3,4}, {1,2,4}, {1,3,3}, which are all different, so a(60) = 4.
For distinct block-sums (instead of blocks) we have
A381634, before sums
A381633.
Other multiset partitions of prime indices:
- For strict multiset partitions with distinct sums (
A321469) see
A381637.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A066328,
A213242,
A213385,
A213427,
A299202,
A300385,
A317142.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Table[Length[Union[Sort[Total/@prix/@#]&/@Select[facs[n],UnsameQ@@#&&And@@SquareFreeQ/@#&]]],{n,100}]
A381716
Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into constant blocks with distinct sums.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 0, 1, 1, 0, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1
Offset: 1
The prime indices of 1728 are {1,1,1,1,1,1,2,2,2}, with multiset partitions into constant multisets with distinct sums:
{{1,1,1,1,1,1},{2,2},{2}}
{{1,1,1,1,1},{1},{2,2,2}}
{{1,1,1,1,1},{1},{2,2},{2}}
{{1,1,1,1},{1,1},{2,2,2}}
{{1,1,1},{1,1},{1},{2,2,2}}
with block-sums: {1,5,6}, {2,4,6}, {1,2,3,6}, {1,2,4,5}, so a(1728) = 4.
For distinct blocks instead of sums we have
A381715.
Cf.
A000720,
A001222,
A002846,
A005117,
A050361,
A213242,
A265947,
A293511,
A299202,
A300385,
A362421.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}];
Table[Length[Union[Sort[Total/@#]&/@Select[Join@@@Tuples[mce/@Split[prix[n]]],UnsameQ@@Total/@#&]]],{n,100}]
A381717
Number of integer partitions of n that cannot be partitioned into constant multisets with distinct block-sums.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 1, 3, 2, 3, 6, 7, 10, 15, 15, 28, 37, 47, 64, 71, 97, 139, 173, 215, 273, 361, 439, 551, 691, 853, 1078, 1325, 1623, 2046, 2458, 2998, 3697, 4527, 5472, 6590, 7988, 9590, 11598, 13933, 16560, 19976, 23822, 28420, 33797, 40088, 47476, 56369, 66678
Offset: 0
For y = (3,2,2,1) we have the multiset partition {{3},{2,2},{1}}, so y is not counted under a(8).
For y = (3,2,1,1,1) there are 3 multiset partitions into constant multisets:
{{3},{2},{1,1,1}}
{{3},{2},{1,1},{1}}
{{3},{2},{1},{1},{1}}
but none of these has distinct block-sums, so y is counted under a(8).
For y = (3,3,1,1,1,1,1,1) we have multiset partitions:
{{1},{3,3},{1,1,1,1,1}}
{{1,1},{3,3},{1,1,1,1}}
{{1},{1,1},{3,3},{1,1,1}}
so y is not counted under a(12).
The a(4) = 1 through a(13) = 10 partitions:
211 . . 3211 422 4221 6211 4322 633 5422
4211 5211 33211 7211 8211 6331
32111 42211 43211 43221 9211
422111 44211 54211
431111 53211 63211
3221111 432111 333211
4221111 432211
532111
4321111
42211111
Twice-partitions of this type (constant with distinct) are counted by
A279786.
For equal instead of distinct block-sums we have
A381993.
A050361 counts factorizations into distinct prime powers.
Cf.
A002846,
A047966,
A130091,
A213242,
A213427,
A265947,
A317142,
A353864,
A381716,
A381991,
A381992,
A382876.
-
mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}];
Table[Length[Select[IntegerPartitions[n],Select[Join@@@Tuples[mce/@Split[#]],UnsameQ@@Total/@#&]=={}&]],{n,0,30}]
A381078
Number of multisets that can be obtained by partitioning the prime indices of n into a multiset of sets (set multipartition) and taking their sums.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 5, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 2, 5, 1, 2, 2, 5, 1, 3, 1, 2, 2, 2, 2, 5, 1, 2, 1, 2, 1, 6, 2, 2, 2
Offset: 1
The prime indices of 60 are {1,1,2,3}, with set multipartitions:
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1},{1},{2,3}}
{{1},{2},{1,3}}
{{1},{3},{1,2}}
{{1},{1},{2},{3}}
with block-sums: {1,6}, {3,4}, {1,1,5}, {1,2,4}, {1,3,3}, {1,1,2,3}, which are all different multisets, so a(60) = 6.
For distinct blocks we have
A381441.
For distinct block-sums we have
A381634.
Other multiset partitions of prime indices:
- For strict multiset partitions with distinct sums (
A321469) see
A381637.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A002846,
A005117,
A025487,
A066328,
A213242,
A213385,
A213427,
A299201,
A299202,
A300385.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
sqfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sqfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Table[Length[Union[Sort[hwt/@#]&/@sqfacs[n]]],{n,100}]
A381453
Number of multisets that can be obtained by choosing a constant integer partition of each prime index of n and taking the multiset union.
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 3, 1, 3, 2, 2, 2, 4, 3, 4, 1, 2, 3, 4, 2, 6, 2, 3, 2, 3, 4, 4, 3, 4, 4, 2, 1, 4, 2, 6, 3, 6, 4, 8, 2, 2, 6, 4, 2, 6, 3, 4, 2, 6, 3, 4, 4, 5, 4, 4, 3, 8, 4, 2, 4, 6, 2, 8, 1, 8, 4, 2, 2, 6, 6, 6, 3, 4, 6, 6, 4, 6, 8, 4, 2, 5, 2, 2, 6, 4, 4, 8
Offset: 1
The a(21) = 6 multisets are: {2,4}, {1,1,4}, {2,2,2}, {1,1,2,2}, {2,1,1,1,1}, {1,1,1,1,1,1}.
The a(n) partitions for n = 1, 3, 7, 13, 53, 21 (G = 16):
() (2) (4) (6) (G) (42)
(11) (22) (33) (88) (411)
(1111) (222) (4444) (222)
(111111) (22222222) (2211)
(1111111111111111) (21111)
(111111)
Choosing divisors instead of constant multisets gives
A355733.
Multiset partitions of prime indices:
- For strict multiset partitions with distinct sums (
A321469) see
A381637.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A000961,
A001222,
A002577,
A018818,
A213242,
A213385,
A213427,
A275870,
A299200,
A300273,
A300385.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@prix[n]]]],{n,nn}]
A381871
Numbers whose prime indices cannot be partitioned into constant blocks having a common sum.
Original entry on oeis.org
6, 10, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 38, 39, 42, 44, 45, 46, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 110
Offset: 1
The terms together with their prime indices begin:
6: {1,2}
10: {1,3}
14: {1,4}
15: {2,3}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
30: {1,2,3}
For distinct instead of equal sums we have
A381636, counted by
A381717.
These are the positions of 0 in
A381995.
A050361 counts multiset partitions into distinct constant blocks.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Select[Range[100],Select[mps[prix[#]],SameQ@@Total/@#&&And@@SameQ@@@#&]=={}&]
A381715
Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into distinct constant blocks.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1
The prime indices of 1728 are {1,1,1,1,1,1,2,2,2}, with multiset partitions into distinct constant blocks:
{{2,2,2},{1,1,1,1,1,1}}
{{1},{2,2,2},{1,1,1,1,1}}
{{2},{2,2},{1,1,1,1,1,1}}
{{1,1},{2,2,2},{1,1,1,1}}
{{1},{2},{2,2},{1,1,1,1,1}}
{{1},{1,1},{1,1,1},{2,2,2}}
{{2},{1,1},{2,2},{1,1,1,1}}
{{1},{2},{1,1},{2,2},{1,1,1}}
with sums:
{6,6}
{1,5,6}
{2,4,6}
{2,4,6}
{1,2,4,5}
{1,2,3,6}
{2,2,4,4}
{1,2,2,3,4}
of which 7 are distinct, so a(1728) = 7.
Positions of terms > 1 are
A046099.
For equal instead of distinct blocks we have
A362421.
For strict instead of constant blocks we have
A381441, before sums
A050326.
A003963 gives product of prime indices.
Cf.
A000720,
A001222,
A002846,
A005117,
A050342,
A213242,
A213385,
A293511,
A299202,
A300385,
A317142,
A381870.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&&And@@SameQ@@@#&]]],{n,100}]
Showing 1-10 of 23 results.
Comments