A295925 Number of bilaterally asymmetric 8-hoops with n symbols.
6, 336, 3795, 23520, 102795, 355656, 1039626, 2674440, 6223140, 13354440, 26807781, 50885016, 92095185, 159981360, 268161060, 435614256, 688255506, 1060829280, 1599170055, 2362871280, 3428409831, 4892775096, 6877654350
Offset: 2
Examples
From the A060560(2) = 30 8-hoops (i.e., from the total number of ways of coloring the vertices of an octagon using up to n=2 colors, allowing for rotations and reflections), there are A019583(2+1) = 24 that are circular palindromes (i.e., bilaterally symmetric bracelets). Hence, there are 30-24=6 bilaterally asymmetric 8-hoops using up to 2 colors. They are the following: 01001111, 01000111, 01000011, 00101011, 00110111 and 11001000. (To view these 6 asymmetric bracelets, the 0's and 1's must be placed on the vertices of a regular octagon inscribed in a circle as it is done in Fig. 4 on p. 379 in Williamson (1972), where 0 is replaced by a and 1 by b.)
Links
- D. M. Y. Sommerville, On certain periodic properties of cyclic compositions of numbers, Proc. London Math. Soc. S2-7(1) (1909), 263-313.
- S. G. Williamson, The combinatorial analysis of patterns and the principle of inclusion-exclusion, Discrete Math. 1 (1972), 357-388.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Programs
-
Mathematica
Drop[#, 2] &@ CoefficientList[Series[3 (7 x^4 + 82 x^3 + 237 x^2 + 92 x + 2) (x + 1) x^2/(1 - x)^9, {x, 0, 24}], x] (* Michael De Vlieger, Dec 02 2017 *)
Formula
a(n) = (1/16)*(n^3-n^2-2)*(n^2+n+2)*(n+1)*(n-1)*n = (n^8-4*n^5-3*n^4+2*n^2+4*n)/16.
a(n) = A060560(n) - A019583(n+1) = (A054622(n) - A019583(n+1))/2. (Notice that the offsets of the sequences in these formulae are not necessarily the same as the offset of the current sequence.)
G.f.: 3*(7*x^4 + 82*x^3 + 237*x^2 + 92*x + 2)*(x + 1)*x^2/(1-x)^9.
Recurrence: (1-Delta)^9 a(n) = 0, where Delta^m a(n) = a(n-m). Hence, a(n) = 9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9).
E.g.f.: exp(x)*x^2*(48 + 848*x + 1658*x^2 + 1046*x^3 + 266*x^4 + 28*x^5 + x^6)/16. - Stefano Spezia, Feb 18 2024
Comments