A295997 Least composite k such that d^k == d (mod k) for every divisor d of n.
4, 341, 6, 341, 4, 561, 6, 341, 6, 561, 10, 561, 4, 561, 561, 341, 4, 561, 6, 561, 6, 561, 22, 561, 4, 561, 6, 561, 4, 561, 6, 341, 561, 561, 561, 561, 4, 561, 6, 561, 4, 561, 6, 561, 561, 341, 46, 561, 6, 561, 91, 561, 4, 561, 10, 561, 6, 341, 15, 561, 4, 341
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- J. H. Conway, R. K. Guy, W. A. Schneeberger, and N. J. A. Sloane, The Primary Pretenders, Acta Arith. 78 (1997), 307-313.
Programs
-
Maple
f := n -> g(map(t -> t[1], ifactors(n)[2])): g:= proc (P) local k; option remember; for k from 4 do if not isprime(k) and andmap(p -> (p &^ k - p mod k = 0), P) then return k end if end do end proc: map(f, [$1..100]); # Robert Israel, Feb 14 2018
-
Mathematica
With[{c = Table[FixedPoint[n + PrimePi@ # + 1 &, n + PrimePi@ n + 1], {n, 561}]}, Table[With[{d = Divisors@ n}, SelectFirst[c, Function[k, AllTrue[d, PowerMod[#, k, k] == Mod[#, k] &]]]], {n, 62}]] (* Michael De Vlieger, Feb 17 2018, after Robert G. Wilson v at A066277 *)
-
PARI
a(n) = forcomposite(k=1,, my (ok=1); fordiv (n, d, if (Mod(d,k)!=Mod(d,k)^k, ok=0; break)); if (ok, return (k))); \\ Rémy Sigrist, Feb 14 2018
-
PARI
a(n)=my(f=factor(n)[,1],p); forcomposite(k=4,561, for(i=1,#f, p=f[i]; if(Mod(p,k)^k!=p, next(2))); return(k)); \\ Charles R Greathouse IV, Feb 14 2018
Formula
a(n) = a(rad(n)), where rad(n) = A007947(n).
For prime p, a(p) = A000790(p). - Max Alekseyev, Feb 27 2018
Extensions
More terms from Rémy Sigrist, Feb 14 2018
Comments