cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296011 Numbers n such that (6k-1) for k=n, n+1, n+2, n+3 are all primes with no primes of the form (6k+1) in between.

Original entry on oeis.org

42, 897, 1052, 2107, 2242, 2457, 2632, 2912, 3887, 4362, 9347, 10367, 12587, 13132, 13797, 14072, 14897, 15737, 15877, 17452, 19292, 20092, 20167, 25677, 27042, 27307, 29967, 30842, 31227, 31837, 34337, 35742, 37052, 37772, 40587, 40957, 41672, 42147, 43687, 44192
Offset: 1

Views

Author

Pedro Caceres, Dec 02 2017

Keywords

Comments

This sequence of numbers is formed by positive integers k that make 6k-1, 6k+5, 6k+11 and 6k+17 prime numbers with no primes of the form 6k+1 in between. All prime numbers larger than 3 can be expressed as 6k-1 or 6k+1. Not all positive k make a prime number. Only certain k under certain conditions can make 6k-1 or 6k+1 prime.
All terms are == 2 (mod 5). - Robert G. Wilson v, Dec 14 2017

Examples

			42 is in the sequence because 6*42-1=251, 6*43-1=257, 6*44-1=263, 6*45-1=296 are prime and there are no other primes in between, i.e., 6*42+1=253=11*23, 6*43+1=259=7*37, 6*44+1=265=5*53 are not primes.
		

Crossrefs

Cf. A090839.
Equals A090836+1.

Programs

  • Mathematica
    Block[{nn = 50000, s}, s = Select[Prime@ Range@ PrimePi[6 (nn + 3) + 1], Divisible[(# - 1), 6] &]; Select[Range@ nn, And[AllTrue[#, PrimeQ], Count[s, q_ /; First[#] < q < Last@ #] == 0] &@ Map[6 # - 1 &, # + Range[0, 3]] &]] (* Michael De Vlieger, Dec 06 2017 *)
    fQ[n_] := Block[{p = {6n -1, 6n +5, 6n +11, 6n +17}}, Union@ PrimeQ@ p == {True} && NextPrime[6n -1, 3] == 6n +17]; Select[Range@50000, fQ] (* Robert G. Wilson v, Dec 14 2017 *)
  • PARI
    isok(n) = isprime(6*n-1) && isprime(6*n+5) && isprime(6*n+11) && isprime(6*n+17) && ((primepi(6*n+17) - primepi(6*n-1)) == 3); \\ Michel Marcus, Dec 11 2017
  • Sage
    a, b, c, d = 2, 3, 5, 7; R = []
    for p in primes(10**5):
        if a % 6 + 1 == b - a == c - b == d - c == 6:
            R.append((a+1)//6)
        a, b, c, d = b, c, d, p
    R # Peter Luschny, Jan 08 2018