cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A296064 a(1) = 0; thereafter a(n) is the smallest number (in absolute value) not yet in the sequence such that the arithmetic mean of the first n terms a(1), a(2), ..., a(n) is an integer. Preference is given to positive values of a(n).

Original entry on oeis.org

0, 2, 1, -3, 5, -5, 7, -7, 9, -9, 11, -11, 13, -13, 15, -15, 17, -17, 19, -19, 21, -21, 23, -23, 25, -25, 27, -27, 29, -29, 31, -31, 33, -33, 35, -35, 37, -37, 39, -39, 41, -41, 43, -43, 45, -45, 47, -47, 49, -49, 51, -51
Offset: 1

Views

Author

Enrique Navarrete, Dec 04 2017

Keywords

Crossrefs

Cf. A296065 (partial sums), A127630.
Essentially the same as A296063.

Programs

  • Maple
    0, 2, 1, -3, seq(seq(s*i,s=[1,-1]),i=5..100,2); # Robert Israel, Dec 26 2017
  • Mathematica
    Nest[Append[#, Block[{k = 1, s = 1}, While[Nand[FreeQ[#, s k], IntegerQ@ Mean[Append[#, s k]]], If[s == 1, s = -1, k++; s = 1]]; s k]] &, {0}, 51] (* Michael De Vlieger, Dec 12 2017 *)

Formula

From Robert Israel, Dec 26 2017: (Start)
a(n) = a(n-3)+a(n-2)-a(n-1) for n >= 7.
G.f.: (2+3*x-4*x^2-x^3+2*x^4)*x^2/((1-x)*(x+1)^2). (End)
a(n) = 1/2+(-1)^n*(1/2-n), n>=4. - R. J. Mathar, May 14 2024

A296069 a(1)=0; thereafter a(n) is the smallest number (in absolute value) not yet in the sequence such that the arithmetic mean of the first n terms a(1), a(2), ..., a(n) is a nonzero integer. Preference is given to positive values of a(n).

Original entry on oeis.org

0, 2, 1, 5, -3, 7, -5, 9, -7, 11, -9, 13, -11, 15, -13, 17, -15, 19, -17, 21, -19, 23, -21, 25, -23, 27, -25, 29, -27, 31, -29, 33, -31, 35, -33, 37, -35, 39, -37, 41, -39, 43, -41, 45, -43, 47, -45, 49, -47, 51, -49, 53, -51
Offset: 1

Views

Author

Enrique Navarrete, Dec 04 2017

Keywords

Crossrefs

Cf. A296063, A296064, A296070 (partial sums).

Programs

  • Mathematica
    Nest[Append[#, Block[{k = 1, s = 1}, While[Nand[FreeQ[#, s k], And[IntegerQ@ Mean@ #, Total@ # != 0] &@ Append[#, s k]], If[s == 1, s = -1, k++; s = 1]]; s k]] &, {0}, 52] (* Michael De Vlieger, Dec 12 2017 *)
  • PARI
    concat(0, Vec(x^2*(2 + 3*x + 4*x^2 - x^3 - 2*x^4) / ((1 - x)*(1 + x)^2) + O(x^65))) \\ Colin Barker, Mar 14 2020

Formula

From Colin Barker, Mar 14 2020: (Start)
G.f.: x^2*(2 + 3*x + 4*x^2 - x^3 - 2*x^4) / ((1 - x)*(1 + x)^2).
a(n) = -a(n-1) + a(n-2) + a(n-3) for n>6.
(End)
Showing 1-2 of 2 results.