A296064 a(1) = 0; thereafter a(n) is the smallest number (in absolute value) not yet in the sequence such that the arithmetic mean of the first n terms a(1), a(2), ..., a(n) is an integer. Preference is given to positive values of a(n).
0, 2, 1, -3, 5, -5, 7, -7, 9, -9, 11, -11, 13, -13, 15, -15, 17, -17, 19, -19, 21, -21, 23, -23, 25, -25, 27, -27, 29, -29, 31, -31, 33, -33, 35, -35, 37, -37, 39, -39, 41, -41, 43, -43, 45, -45, 47, -47, 49, -49, 51, -51
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (-1,1,1).
Programs
-
Maple
0, 2, 1, -3, seq(seq(s*i,s=[1,-1]),i=5..100,2); # Robert Israel, Dec 26 2017
-
Mathematica
Nest[Append[#, Block[{k = 1, s = 1}, While[Nand[FreeQ[#, s k], IntegerQ@ Mean[Append[#, s k]]], If[s == 1, s = -1, k++; s = 1]]; s k]] &, {0}, 51] (* Michael De Vlieger, Dec 12 2017 *)
Formula
From Robert Israel, Dec 26 2017: (Start)
a(n) = a(n-3)+a(n-2)-a(n-1) for n >= 7.
G.f.: (2+3*x-4*x^2-x^3+2*x^4)*x^2/((1-x)*(x+1)^2). (End)
a(n) = 1/2+(-1)^n*(1/2-n), n>=4. - R. J. Mathar, May 14 2024