cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296075 Sum of deficiencies of divisors of n.

Original entry on oeis.org

1, 2, 3, 3, 5, 4, 7, 4, 8, 8, 11, 1, 13, 12, 13, 5, 17, 6, 19, 7, 19, 20, 23, -10, 24, 24, 22, 13, 29, 4, 31, 6, 31, 32, 33, -16, 37, 36, 37, -2, 41, 12, 43, 25, 30, 44, 47, -37, 48, 34, 49, 31, 53, 8, 53, 6, 55, 56, 59, -49, 61, 60, 46, 7, 63, 28, 67, 43, 67, 36, 71, -78, 73, 72, 58, 49, 75, 36, 79, -27, 63, 80, 83, -47, 83
Offset: 1

Views

Author

Antti Karttunen, Dec 04 2017

Keywords

Comments

a(n)=0 for n in A066218. Are 1 and 12 the only solutions to a(n)=1? - Robert Israel, Dec 04 2017

Examples

			For n = 6, whose divisors are 1, 2, 3, 6, their deficiencies are 1, 1, 2, 0, thus a(6) = 1 + 1 + 2 + 0 = 4.
For n = 24, whose divisors are 1, 2, 3, 4, 6, 8, 12, 24, their deficiencies are 1, 1, 2, 1, 0, 1, -4, -12, thus a(24) = 1 + 1 + 2 + 1 + 0 + 1 + -4 + -12 = -10.
		

Crossrefs

Programs

  • Maple
    f:= n -> add(2*t-numtheory:-sigma(t), t=numtheory:-divisors(n)):
    map(f, [$1..100]); # Robert Israel, Dec 04 2017
  • Mathematica
    f1[p_, e_] := (p^(e+1)-1)/(p-1); f2[p_, e_] := (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2; a[1] = 1; a[n_] := Module[{f = FactorInteger[n]}, 2 * Times @@ f1 @@@ f - Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Dec 04 2023 *)
  • PARI
    A033879(n) = ((2*n)-sigma(n));
    A296075(n) = sumdiv(n,d,A033879(d));

Formula

a(n) = Sum_{d|n} A033879(d).
a(n) = A296074(n) + A033879(n).
If m and n are coprime, a(m*n) = 2*a(m)*A000203(n)+2*a(n)*A000203(m)-a(m)*a(n)-2*A000203(m)*A000203(n). - Robert Israel, Dec 04 2017
a(n) = 2*A000203(n) - A007429(n). - Ridouane Oudra, Jul 29 2019
Sum_{k=1..n} a(k) ~ (Pi^2/6 - Pi^4/72) * n^2. - Amiram Eldar, Dec 04 2023