A296075 Sum of deficiencies of divisors of n.
1, 2, 3, 3, 5, 4, 7, 4, 8, 8, 11, 1, 13, 12, 13, 5, 17, 6, 19, 7, 19, 20, 23, -10, 24, 24, 22, 13, 29, 4, 31, 6, 31, 32, 33, -16, 37, 36, 37, -2, 41, 12, 43, 25, 30, 44, 47, -37, 48, 34, 49, 31, 53, 8, 53, 6, 55, 56, 59, -49, 61, 60, 46, 7, 63, 28, 67, 43, 67, 36, 71, -78, 73, 72, 58, 49, 75, 36, 79, -27, 63, 80, 83, -47, 83
Offset: 1
Examples
For n = 6, whose divisors are 1, 2, 3, 6, their deficiencies are 1, 1, 2, 0, thus a(6) = 1 + 1 + 2 + 0 = 4. For n = 24, whose divisors are 1, 2, 3, 4, 6, 8, 12, 24, their deficiencies are 1, 1, 2, 1, 0, 1, -4, -12, thus a(24) = 1 + 1 + 2 + 1 + 0 + 1 + -4 + -12 = -10.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Maple
f:= n -> add(2*t-numtheory:-sigma(t), t=numtheory:-divisors(n)): map(f, [$1..100]); # Robert Israel, Dec 04 2017
-
Mathematica
f1[p_, e_] := (p^(e+1)-1)/(p-1); f2[p_, e_] := (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2; a[1] = 1; a[n_] := Module[{f = FactorInteger[n]}, 2 * Times @@ f1 @@@ f - Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Dec 04 2023 *)
-
PARI
A033879(n) = ((2*n)-sigma(n)); A296075(n) = sumdiv(n,d,A033879(d));
Formula
a(n) = Sum_{d|n} A033879(d).
If m and n are coprime, a(m*n) = 2*a(m)*A000203(n)+2*a(n)*A000203(m)-a(m)*a(n)-2*A000203(m)*A000203(n). - Robert Israel, Dec 04 2017
Sum_{k=1..n} a(k) ~ (Pi^2/6 - Pi^4/72) * n^2. - Amiram Eldar, Dec 04 2023
Comments