cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296116 Number of partitions in which each summand, s, may be used with frequency f if f divides s.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 4, 6, 9, 12, 14, 18, 23, 29, 35, 43, 56, 68, 82, 100, 122, 147, 174, 209, 252, 302, 356, 421, 500, 589, 690, 808, 952, 1110, 1292, 1505, 1756, 2034, 2348, 2715, 3139, 3620, 4156, 4778, 5492, 6296, 7195, 8220, 9398, 10714, 12194, 13872, 15784
Offset: 0

Views

Author

David S. Newman, Dec 04 2017

Keywords

Examples

			For n=3, the partitions counted are 3 and 2+1.
For n=4: 4, 3+1, 2+2.
For n=5: 5, 4+1, 3+2, 2+2+1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1 or n<0, 0,
          b(n, i-1)+add(b(n-i*j, i-1), j=numtheory[divisors](i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 05 2017
  • Mathematica
    iend = 30;
    s = Series[Product[1 + Sum[x^(Divisors[n][[i]] n), {i, 1, Length[Divisors[n]]}], {n, 1, iend}], {x, 0, iend}]; Print[s];
    CoefficientList[s, x]

Formula

G.f.: Product_{n >= 1} (1 + Sum_{d divides n} x^(d*n)).

Extensions

More terms from Alois P. Heinz, Dec 05 2017