A296116 Number of partitions in which each summand, s, may be used with frequency f if f divides s.
1, 1, 1, 2, 3, 4, 4, 6, 9, 12, 14, 18, 23, 29, 35, 43, 56, 68, 82, 100, 122, 147, 174, 209, 252, 302, 356, 421, 500, 589, 690, 808, 952, 1110, 1292, 1505, 1756, 2034, 2348, 2715, 3139, 3620, 4156, 4778, 5492, 6296, 7195, 8220, 9398, 10714, 12194, 13872, 15784
Offset: 0
Keywords
Examples
For n=3, the partitions counted are 3 and 2+1. For n=4: 4, 3+1, 2+2. For n=5: 5, 4+1, 3+2, 2+2+1.
Links
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1 or n<0, 0, b(n, i-1)+add(b(n-i*j, i-1), j=numtheory[divisors](i)))) end: a:= n-> b(n$2): seq(a(n), n=0..60); # Alois P. Heinz, Dec 05 2017
-
Mathematica
iend = 30; s = Series[Product[1 + Sum[x^(Divisors[n][[i]] n), {i, 1, Length[Divisors[n]]}], {n, 1, iend}], {x, 0, iend}]; Print[s]; CoefficientList[s, x]
Formula
G.f.: Product_{n >= 1} (1 + Sum_{d divides n} x^(d*n)).
Extensions
More terms from Alois P. Heinz, Dec 05 2017