A296119 Number of ways to choose a strict factorization of each factor in a factorization of n.
1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 7, 1, 3, 3, 7, 1, 7, 1, 7, 3, 3, 1, 16, 2, 3, 4, 7, 1, 12, 1, 12, 3, 3, 3, 21, 1, 3, 3, 16, 1, 12, 1, 7, 7, 3, 1, 33, 2, 7, 3, 7, 1, 16, 3, 16, 3, 3, 1, 34, 1, 3, 7, 23, 3, 12, 1, 7, 3, 12, 1, 50, 1, 3, 7, 7, 3, 12, 1, 33, 7, 3
Offset: 1
Keywords
Examples
The a(24) = 16 twice-factorizations: (2)*(2)*(2)*(3), (2)*(2)*(2*3), (2)*(2)*(6), (2)*(3)*(4), (2)*(2*6), (2)*(3*4), (2)*(12), (3)*(2*4), (3)*(8), (4)*(2*3), (4)*(6), (2*3*4), (2*12), (3*8), (4*6), (24).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Sum[Times@@(Length[Select[facs[#],UnsameQ@@#&]]&/@fac),{fac,facs[n]}],{n,100}]
-
PARI
A045778(n, m=n) = ((n<=m) + sumdiv(n, d, if((d>1)&&(d<=m)&&(d
A045778(n/d, d-1)))); A296119(n, m=n) = if(1==n, 1, sumdiv(n, d, if((d>1)&&(d<=m), A045778(d)*A296119(n/d, d)))); \\ Antti Karttunen, Oct 08 2018
Formula
Dirichlet g.f.: 1/Product_{n > 1}(1 - A045778(n)/n^s).