cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 47 results. Next

A089259 Expansion of Product_{m>=1} 1/(1-x^m)^A000009(m).

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 22, 36, 61, 101, 166, 267, 433, 686, 1088, 1709, 2671, 4140, 6403, 9824, 15028, 22864, 34657, 52288, 78646, 117784, 175865, 261657, 388145, 573936, 846377, 1244475, 1825170, 2669776, 3895833, 5671127, 8236945, 11936594, 17261557, 24909756
Offset: 0

Views

Author

N. J. A. Sloane, Dec 23 2003

Keywords

Comments

Number of complete set partitions of the integer partitions of n. This is the Euler transform of A000009. If we change the combstruct command from unlabeled to labeled, then we get A000258. - Thomas Wieder, Aug 01 2008
Number of set multipartitions (multisets of sets) of integer partitions of n. Also a(n) < A270995(n) for n>5. - Gus Wiseman, Apr 10 2016

Examples

			From _Gus Wiseman_, Oct 22 2018: (Start)
The a(6) = 22 set multipartitions of integer partitions of 6:
  (6)  (15)    (123)      (12)(12)      (1)(1)(1)(12)    (1)(1)(1)(1)(1)(1)
       (24)    (1)(14)    (1)(1)(13)    (1)(1)(1)(1)(2)
       (1)(5)  (1)(23)    (1)(2)(12)
       (2)(4)  (2)(13)    (1)(1)(1)(3)
       (3)(3)  (3)(12)    (1)(1)(2)(2)
               (1)(1)(4)
               (1)(2)(3)
               (2)(2)(2)
(End)
		

Crossrefs

Programs

  • Maple
    with(combstruct): A089259:= [H, {H=Set(T, card>=1), T=PowerSet (Sequence (Z, card>=1), card>=1)}, unlabeled]; 1, seq (count (A089259, size=j), j=1..16); # Thomas Wieder, Aug 01 2008
    # second Maple program:
    with(numtheory):
    b:= proc(n, i)
          if n<0 or n>i*(i+1)/2 then 0
        elif n=0 then 1
        elif i<1 then 0
        else b(n,i):= b(n-i, i-1) +b(n, i-1)
          fi
        end:
    a:= proc(n) option remember; `if` (n=0, 1,
           add(add(d* b(d, d), d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Nov 11 2011
  • Mathematica
    max = 40; CoefficientList[Series[Product[1/(1-x^m)^PartitionsQ[m], {m, 1, max}], {x, 0, max}], x] (* Jean-François Alcover, Mar 24 2014 *)
    b[n_, i_] := b[n, i] = Which[n<0 || n>i*(i+1)/2, 0, n == 0, 1, i<1, 0, True, b[n-i, i-1] + b[n, i-1]]; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d* b[d, d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 100} ] (* Jean-François Alcover, Feb 13 2016, after Alois P. Heinz *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={concat([1], EulerT(Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)) - 1)))} \\ Andrew Howroyd, Oct 26 2018

A381432 Heinz numbers of section-sum partitions. Union of A381431.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Feb 27 2025

Keywords

Comments

First differs from A320340, A364347, A350838 in containing 65.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   20: {1,1,3}
   22: {1,5}
   23: {9}
   25: {3,3}
   26: {1,6}
   27: {2,2,2}
		

Crossrefs

Partitions of this type are counted by A239455, complement A351293.
The conjugate is A351294, union of A048767 (parts A381440, fixed A048768, A217605).
Union of A381431 (parts A381436).
The complement is A381433, conjugate A351295.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Select[Range[100],MemberQ[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]&]

A381433 Heinz numbers of non section-sum partitions. Complement of A381431.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 110, 114, 120, 126, 132, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 198, 204, 210, 216, 220, 222, 228, 231, 234, 238, 240, 246, 252, 258
Offset: 1

Views

Author

Gus Wiseman, Feb 27 2025

Keywords

Comments

First differs from A364348, A364537, A350845 in not containing 65.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The terms together with their prime indices begin:
    6: {1,2}
   12: {1,1,2}
   18: {1,2,2}
   21: {2,4}
   24: {1,1,1,2}
   30: {1,2,3}
   36: {1,1,2,2}
   42: {1,2,4}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   70: {1,3,4}
   72: {1,1,1,2,2}
   78: {1,2,6}
   84: {1,1,2,4}
   90: {1,2,2,3}
   96: {1,1,1,1,1,2}
  102: {1,2,7}
  105: {2,3,4}
  108: {1,1,2,2,2}
		

Crossrefs

Partitions of this type are counted by A351293, complement A239455.
The conjugate is A351295, union of A048767 (parts A381440, fixed A048768, A217605).
The complement is A381432, union of A381431 (conjugate A351294, parts A381436).
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Select[Range[100],!MemberQ[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]&]

A302478 Products of prime numbers of squarefree index.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 22, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 39, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 54, 55, 58, 59, 60, 62, 64, 65, 66, 67, 68, 72, 73, 75, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set multisystems.
01:  {}
02:  {{}}
03:  {{1}}
04:  {{},{}}
05:  {{2}}
06:  {{},{1}}
08:  {{},{},{}}
09:  {{1},{1}}
10:  {{},{2}}
11:  {{3}}
12:  {{},{},{1}}
13:  {{1,2}}
15:  {{1},{2}}
16:  {{},{},{},{}}
17:  {{4}}
18:  {{},{1},{1}}
20:  {{},{},{2}}
22:  {{},{3}}
24:  {{},{},{},{1}}
25:  {{2},{2}}
26:  {{},{1,2}}
27:  {{1},{1},{1}}
29:  {{1,3}}
30:  {{},{1},{2}}
31:  {{5}}
32:  {{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,And@@SquareFreeQ/@PrimePi/@FactorInteger[#][[All,1]]]&]
  • PARI
    ok(n)={!#select(p->!issquarefree(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018

A381454 Number of multisets that can be obtained by choosing a strict integer partition of each prime index of n and taking the multiset union.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 4, 2, 2, 1, 5, 1, 6, 2, 2, 3, 8, 1, 3, 4, 1, 2, 10, 2, 12, 1, 3, 5, 4, 1, 15, 6, 4, 2, 18, 2, 22, 3, 2, 8, 27, 1, 3, 3, 5, 4, 32, 1, 6, 2, 6, 10, 38, 2, 46, 12, 2, 1, 8, 3, 54, 5, 8, 4, 64, 1, 76, 15, 3, 6, 6, 4, 89, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2025

Keywords

Comments

First differs from A357982 at a(25) = 3, A357982(25) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Set multipartitions are generally not transitive. For example, we have arrows: {{1},{1,2}}: {1,1,2} -> {1,3} and {{1,3}}: {1,3} -> {4}, but there is no set multipartition {1,1,2} -> {4}.

Examples

			The a(25) = 3 multisets are: {3,3}, {1,2,3}, {1,1,2,2}.
		

Crossrefs

For constant instead of strict partitions see A381453, A355733, A381455, A000688.
Positions of 1 are A003586.
The upper version is A381078, before sums A050320.
For distinct block-sums see A381634, A381633, A381806.
Multiset partitions of prime indices:
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For strict multiset partitions (A045778) see A381452.
- For set systems (A050326, zeros A293243) see A381441 (upper).
- For sets of constant multisets (A050361) see A381715.
- For strict multiset partitions with distinct sums (A321469) see A381637.
- For sets of constant multisets with distinct sums (A381635, zeros A381636) see A381716.
More on set systems: A050342, A116539, A296120, A318361.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
More on set multipartitions with distinct sums: A279785, A381717, A381718.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A358914 counts twice-partitions into distinct strict partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@prix[n]]]],{n,100}]

Formula

a(A002110(n)) = A381808(n).

A381633 Number of ways to partition the prime indices of n into sets with distinct sums.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 5, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2025

Keywords

Comments

First differs from A050326 at 30, 60, 70, 90, ...
First differs from A339742 at 42, 66, 78, 84, ...
First differs from A381634 at a(210) = 12, A381634(210) = 10.
Also the number of factorizations on n into squarefree numbers > 1 with distinct sums of prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The A050320(60) = 6 ways to partition {1,1,2,3} into sets are:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{1},{2,3}}
  {{1},{2},{1,3}}
  {{1},{3},{1,2}}
  {{1},{1},{2},{3}}
Of these, only the following have distinct block-sums:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{2},{1,3}}
So a(60) = 3.
		

Crossrefs

Without distinct block-sums we have A050320, after sums A381078 (lower A381454).
For distinct blocks instead of sums we have A050326, after sums A381441, see A358914.
Taking block-sums (and sorting) gives A381634.
For constant instead of strict blocks we have A381635, see A381716, A381636.
Positions of 0 are A381806, superset of A293243.
Positions of 1 are A381870, superset of A293511.
More on set multipartitions with distinct sums: A279785, A381717, A381718.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
A000041 counts integer partitions, strict A000009.
A001055 count multiset partitions of prime indices, see A317141 (upper), A300383 (lower).
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[Select[sfacs[n],UnsameQ@@hwt/@#&]],{n,100}]

A381431 Heinz number of the section-sum partition of the prime indices of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 7, 8, 9, 7, 11, 10, 13, 11, 11, 16, 17, 15, 19, 14, 13, 13, 23, 20, 25, 17, 27, 22, 29, 13, 31, 32, 17, 19, 17, 25, 37, 23, 19, 28, 41, 17, 43, 26, 33, 29, 47, 40, 49, 35, 23, 34, 53, 45, 19, 44, 29, 31, 59, 26, 61, 37, 39, 64, 23, 19, 67, 38
Offset: 1

Views

Author

Gus Wiseman, Feb 26 2025

Keywords

Comments

The image first differs from A320340, A364347, A350838 in containing a(150) = 65.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			Prime indices of 180 are (3,2,2,1,1), with section-sum partition (6,3), so a(180) = 65.
The terms together with their prime indices begin:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
   7: {4}
  11: {5}
  10: {1,3}
  13: {6}
  11: {5}
  11: {5}
  16: {1,1,1,1}
		

Crossrefs

The conjugate is A048767, union A351294, complement A351295, fix A048768 (count A217605).
Taking length instead of sum in the definition gives A238745, conjugate A181819.
Partitions of this type are counted by A239455, complement A351293.
The union is A381432, complement A381433.
Values appearing only once are A381434, more than once A381435.
These are the Heinz numbers of rows of A381436, conjugate A381440.
Greatest prime index of each term is A381437, counted by A381438.
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Table[Times@@Prime/@egs[prix[n]],{n,100}]

Formula

A122111(a(n)) = A048767(n).

A381718 Number of normal multiset partitions of weight n into sets with distinct sums.

Original entry on oeis.org

1, 1, 2, 6, 23, 106, 549, 3184, 20353, 141615, 1063399, 8554800, 73281988, 665141182, 6369920854, 64133095134, 676690490875, 7462023572238, 85786458777923, 1025956348473929, 12739037494941490
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(3) = 6 multiset partitions:
  {{1}}  {{1,2}}    {{1,2,3}}
         {{1},{2}}  {{1},{1,2}}
                    {{1},{2,3}}
                    {{2},{1,2}}
                    {{2},{1,3}}
                    {{1},{2},{3}}
The a(4) = 23 factorizations:
  2*3*6  5*30    3*30    2*30    210
         10*15   6*15    6*10    2*105
         2*5*15  2*3*15  2*3*10  3*70
         3*5*10                  5*42
                                 7*30
                                 6*35
                                 10*21
                                 2*3*35
                                 2*5*21
                                 2*7*15
                                 3*5*14
                                 2*3*5*7
		

Crossrefs

For distinct blocks instead of sums we have A116539, see A050326.
Without distinct sums we have A116540 (normal set multipartitions).
Twice-partitions of this type are counted by A279785.
Without strict blocks we have A326519.
Factorizations of this type are counted by A381633.
For constant instead of strict blocks we have A382203.
For distinct sizes instead of sums we have A382428, non-strict blocks A326517.
For equal instead of distinct block-sums we have A382429, non-strict blocks A326518.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count factorizations, strict A045778.
Normal multiset partitions: A034691, A035310, A255906.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],UnsameQ@@Total/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]

Extensions

a(10)-a(11) from Robert Price, Mar 31 2025
a(12)-a(20) from Christian Sievers, Apr 05 2025

A381806 Numbers that cannot be written as a product of squarefree numbers with distinct sums of prime indices.

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2025

Keywords

Comments

First differs from A212164 in having 3600.
First differs from A293243 in having 18000.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers whose prime indices cannot be partitioned into a multiset of sets with distinct sums.

Examples

			There are 4 factorizations of 18000 into squarefree numbers:
  (2*2*3*5*10*30)
  (2*2*5*6*10*15)
  (2*2*10*15*30)
  (2*5*6*10*30)
but none of these has all distinct sums of prime indices, so 18000 is in the sequence.
		

Crossrefs

Strongly normal multisets of this type are counted by A292444.
These are the zeros in A381633, see A050320, A321469, A381078, A381634.
For distinct blocks see A050326, A293243, A293511, A358914, A381441.
For more on set multipartitions see A089259, A116540, A270995, A296119, A318360.
For more on set multipartitions with distinct sums see A279785, A381718.
For constant instead of strict blocks we have A381636, see A381635, A381716.
Partitions of this type are counted by A381990, complement A381992.
The complement is A382075.
A001055 counts multiset partitions, strict A045778.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sqfics[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfics[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]]
    Select[Range[nn],Length[Select[sqfics[#],UnsameQ@@hwt/@#&]]==0&]

A381992 Number of integer partitions of n that can be partitioned into sets with distinct sums.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 170, 217, 282, 360, 449, 571, 719, 899, 1122, 1391, 1727, 2136, 2616, 3209, 3947, 4800, 5845, 7094, 8602, 10408, 12533, 15062, 18107, 21686, 25956, 30967, 36936, 43897, 52132, 61850, 73157, 86466, 101992, 120195
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2025

Keywords

Comments

Also the number of integer partitions of n whose Heinz number belongs to A382075 (can be written as a product of squarefree numbers with distinct sums of prime indices).

Examples

			There are 6 ways to partition (3,2,2,1) into sets:
  {{2},{1,2,3}}
  {{1,2},{2,3}}
  {{1},{2},{2,3}}
  {{2},{2},{1,3}}
  {{2},{3},{1,2}}
  {{1},{2},{2},{3}}
Of these, 3 have distinct block sums:
  {{2},{1,2,3}}
  {{1,2},{2,3}}
  {{1},{2},{2,3}}
so (3,2,2,1) is counted under a(8).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)  (3)    (4)      (5)      (6)        (7)        (8)
            (2,1)  (3,1)    (3,2)    (4,2)      (4,3)      (5,3)
                   (2,1,1)  (4,1)    (5,1)      (5,2)      (6,2)
                            (2,2,1)  (3,2,1)    (6,1)      (7,1)
                            (3,1,1)  (4,1,1)    (3,2,2)    (3,3,2)
                                     (2,2,1,1)  (3,3,1)    (4,2,2)
                                                (4,2,1)    (4,3,1)
                                                (5,1,1)    (5,2,1)
                                                (3,2,1,1)  (6,1,1)
                                                           (3,2,2,1)
                                                           (3,3,1,1)
                                                           (4,2,1,1)
                                                           (3,2,1,1,1)
		

Crossrefs

More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
Twice-partitions of this type are counted by A279785.
Multiset partitions of this type are counted by A381633, zeros of A381634.
For constant instead of strict blocks see A381717, A381636, A381635, A381716, A381991.
Normal multiset partitions of this type are counted by A381718, see A116539.
The complement is counted by A381990, ranked by A381806.
These partitions are ranked by A382075.
For distinct blocks instead of sums we have A382077, complement A382078.
For a unique choice we have A382079.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
A382201 lists MM-numbers of sets with distinct sums.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#], And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]],{n,0,10}]

Extensions

a(21)-a(50) from Bert Dobbelaere, Mar 29 2025
Showing 1-10 of 47 results. Next