cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A296143 Number of configurations, excluding reflections and color swaps, of n beads each of three colors on a string.

Original entry on oeis.org

1, 11, 148, 2955, 63231, 1430912, 33259920, 788827215, 18989544145, 462583897776, 11377251858336, 282061000649064, 7039841561638536, 176714389335432960, 4457914983511649088, 112945455380006673039, 2872488224771372668725, 73301643957476400237200, 1876197202671454764901800, 48152601206547990689466930
Offset: 1

Views

Author

Marko Riedel, Dec 05 2017

Keywords

Comments

Power Group Enumeration applies here.

References

  • E. Palmer and F. Harary, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Formula

With Z(S_{q,|m}) = [w^q] exp(Sum_{d|m} a_d w^d/d) and parameters n,k we have for nk even, (1/2) ((nk!)/k!/n!^k + (nk/2)! 2^(nk/2) [a_2^(nk/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!) and for nk odd, (1/2) ((nk!)/k!/n!^k + ((nk-1)/2)! 2^((nk-1)/2) [a_1 a_2^((nk-1)/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!). This sequence has k=3.

A296144 Number of configurations, excluding reflections and color swaps, of n beads each of four colors on a string.

Original entry on oeis.org

1, 65, 7780, 1315825, 244448316, 48099214856, 9844135755168, 2074189508907945, 446932339677117580, 98028351499011470680, 21813996435165740009568, 4912693780465467348590056, 1117598703447726807428962400, 256444915320263078585645544000, 59283681793041084579875939892480, 13794224341895239072712767055117865
Offset: 1

Views

Author

Marko Riedel, Dec 05 2017

Keywords

Comments

Power Group Enumeration applies here.

References

  • E. Palmer and F. Harary, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Formula

With Z(S_{q,|m}) = [w^q] exp(Sum_{d|m} a_d w^d/d) and parameters n,k we have for nk even, (1/2) ((nk!)/k!/n!^k + (nk/2)! 2^(nk/2) [a_2^(nk/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!) and for nk odd, (1/2) ((nk!)/k!/n!^k + ((nk-1)/2)! 2^((nk-1)/2) [a_1 a_2^((nk-1)/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!). This sequence has k=4.

A296146 Number of configurations, excluding reflections and color swaps, of n beads each of six colors on a string.

Original entry on oeis.org

1, 5363, 95304160, 2254635672135, 61689337799825736, 1854290094982330189184, 59529536963190914931717120, 2006426039057377710970239751995, 70206501544183654687465441723567000, 2530662094366411886472214155427418011488, 93449587615256254621892607439280048712775680
Offset: 1

Views

Author

Marko Riedel, Dec 05 2017

Keywords

Comments

Power Group Enumeration applies here.

References

  • E. Palmer and F. Harary, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Formula

With Z(S_{q,|m}) = [w^q] exp(Sum_{d|m} a_d w^d/d) and parameters n,k we have for nk even, (1/2) ((nk!)/k!/n!^k + (nk/2)! 2^(nk/2) [a_2^(nk/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!) and for nk odd, (1/2) ((nk!)/k!/n!^k + ((nk-1)/2)! 2^((nk-1)/2) [a_1 a_2^((nk-1)/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!). This sequence has k=6.
Showing 1-3 of 3 results.