cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A296143 Number of configurations, excluding reflections and color swaps, of n beads each of three colors on a string.

Original entry on oeis.org

1, 11, 148, 2955, 63231, 1430912, 33259920, 788827215, 18989544145, 462583897776, 11377251858336, 282061000649064, 7039841561638536, 176714389335432960, 4457914983511649088, 112945455380006673039, 2872488224771372668725, 73301643957476400237200, 1876197202671454764901800, 48152601206547990689466930
Offset: 1

Views

Author

Marko Riedel, Dec 05 2017

Keywords

Comments

Power Group Enumeration applies here.

References

  • E. Palmer and F. Harary, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Formula

With Z(S_{q,|m}) = [w^q] exp(Sum_{d|m} a_d w^d/d) and parameters n,k we have for nk even, (1/2) ((nk!)/k!/n!^k + (nk/2)! 2^(nk/2) [a_2^(nk/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!) and for nk odd, (1/2) ((nk!)/k!/n!^k + ((nk-1)/2)! 2^((nk-1)/2) [a_1 a_2^((nk-1)/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!). This sequence has k=3.

A296144 Number of configurations, excluding reflections and color swaps, of n beads each of four colors on a string.

Original entry on oeis.org

1, 65, 7780, 1315825, 244448316, 48099214856, 9844135755168, 2074189508907945, 446932339677117580, 98028351499011470680, 21813996435165740009568, 4912693780465467348590056, 1117598703447726807428962400, 256444915320263078585645544000, 59283681793041084579875939892480, 13794224341895239072712767055117865
Offset: 1

Views

Author

Marko Riedel, Dec 05 2017

Keywords

Comments

Power Group Enumeration applies here.

References

  • E. Palmer and F. Harary, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Formula

With Z(S_{q,|m}) = [w^q] exp(Sum_{d|m} a_d w^d/d) and parameters n,k we have for nk even, (1/2) ((nk!)/k!/n!^k + (nk/2)! 2^(nk/2) [a_2^(nk/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!) and for nk odd, (1/2) ((nk!)/k!/n!^k + ((nk-1)/2)! 2^((nk-1)/2) [a_1 a_2^((nk-1)/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!). This sequence has k=4.

A296145 Number of configurations, excluding reflections and color swaps, of n beads each of five colors on a string.

Original entry on oeis.org

1, 513, 701260, 1273147785, 2597337494136, 5711975829039480, 13239412829570653440, 31902976888441563215025, 79210992511055955027177700, 201394898991255834414075013488, 522024491776928458970588283023040, 1374924298868439440732405164346591160, 3670434093979203432106449568933449100800, 9911788665178411118992936004423729374579200
Offset: 1

Views

Author

Marko Riedel, Dec 05 2017

Keywords

Comments

Power Group Enumeration applies here.

References

  • E. Palmer and F. Harary, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Formula

With Z(S_{q,|m}) = [w^q] exp(Sum_{d|m} a_d w^d/d) and parameters n,k we have for nk even, (1/2) ((nk!)/k!/n!^k + (nk/2)! 2^(nk/2) [a_2^(nk/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!) and for nk odd, (1/2) ((nk!)/k!/n!^k + ((nk-1)/2)! 2^((nk-1)/2) [a_1 a_2^((nk-1)/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!). This sequence has k=5.
Showing 1-3 of 3 results.