A296188 Number of normal semistandard Young tableaux whose shape is the integer partition with Heinz number n.
1, 1, 2, 1, 4, 4, 8, 1, 6, 12, 16, 6, 32, 32, 28, 1, 64, 16, 128, 24, 96, 80, 256, 8, 44, 192, 22, 80, 512, 96, 1024, 1, 288, 448, 224, 30, 2048, 1024, 800, 40, 4096, 400, 8192, 240, 168, 2304, 16384, 10, 360, 204, 2112, 672, 32768, 68, 832, 160, 5376, 5120
Offset: 1
Keywords
Examples
The a(9) = 6 tableaux: 1 3 1 2 1 2 1 2 1 1 1 1 2 4 3 4 3 3 2 3 2 3 2 2
References
- Richard P. Stanley, Enumerative Combinatorics Volume 2, Cambridge University Press, 1999, Chapter 7.10.
Links
- FindStat - Combinatorial Statistic Finder, Semistandard Young tableaux
Crossrefs
Programs
-
Mathematica
conj[y_List]:=If[Length[y]===0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; conj[n_Integer]:=Times@@Prime/@conj[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]; ssyt[n_]:=If[n===1,1,Sum[ssyt[n/q*Times@@Cases[FactorInteger[q],{p_,k_}:>If[p===2,1,NextPrime[p,-1]^k]]],{q,Rest[Divisors[n]]}]]; Table[ssyt[conj[n]],{n,50}]
Formula
Let b(n) = Sum_{d|n, d>1} b(n * d' / d) where if d = Product_i prime(s_i)^m(i) then d' = Product_i prime(s_i - 1)^m(i) and prime(0) = 1. Then a(n) = b(conj(n)) where conj = A122111.
Comments