cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296260 Number of preference profiles with 4 alternatives and n agents (IANC model).

Original entry on oeis.org

1, 1, 17, 111, 762, 4095, 19941, 84825, 329214, 1168740, 3858348, 11920740, 34773590, 96282900, 254473884, 644637204, 1571330916, 3697182450, 8421423582, 18615637950, 40023753924, 83859017814, 171530071362, 343059613650, 671825586021, 1289904147324, 2430974136780
Offset: 1

Views

Author

Alexander Karpov, Dec 15 2017

Keywords

Crossrefs

Cf. A037240 for 3 alternatives.

Programs

  • Mathematica
    Array[Binomial[# + 23, 23]/24 + Which[Divisible[#1, 12], 3 Binomial[#1/2 + 11, 11]/8 + Binomial[#1/3 + 7, 7]/3 + Binomial[#1/4 + 5, 5]/4, MemberQ[{1, 5, 7, 11}, #2], 0, MemberQ[{2, 10}, #2], 3 Binomial[#1/2 + 11, 11]/8, MemberQ[{3, 9}, #2], Binomial[#1/3 + 7, 7]/3, MemberQ[{4, 8}, #2], 3 Binomial[#1/2 + 11, 11]/8 + Binomial[#1/4 + 5, 5]/4, True, 3 Binomial[#1/2 + 11, 11]/8 + Binomial[#1/3 + 7, 7]/3 ] & @@ {#, Mod[#, 12]} &, 26] (* Michael De Vlieger, Dec 18 2017 *)

Formula

if n == 0 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8 + C(n/3+7,7)/3+C(n/4+5,5)/4;
if n == 1,5,7,11 mod 12, a(n) = C(n+23,23)/24;
if n == 2,10 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8;
if n == 3,9 mod 12, a(n) = C(n+23,23)/24 + C(n/3+7,7)/3;
if n == 4,8 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8 +C(n/4+5,5)/4;
if n == 6 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8 + C(n/3+7,7)/3.

Extensions

More terms from Michael De Vlieger, Dec 18 2017