A296260 Number of preference profiles with 4 alternatives and n agents (IANC model).
1, 1, 17, 111, 762, 4095, 19941, 84825, 329214, 1168740, 3858348, 11920740, 34773590, 96282900, 254473884, 644637204, 1571330916, 3697182450, 8421423582, 18615637950, 40023753924, 83859017814, 171530071362, 343059613650, 671825586021, 1289904147324, 2430974136780
Offset: 1
Keywords
Links
- Ö. Egecioglu, Uniform generation of anonymous and neutral preference profiles for social choice rules, Monte Carlo Methods and Applications, 15(3), Jan 2009, 241-255.
Crossrefs
Cf. A037240 for 3 alternatives.
Programs
-
Mathematica
Array[Binomial[# + 23, 23]/24 + Which[Divisible[#1, 12], 3 Binomial[#1/2 + 11, 11]/8 + Binomial[#1/3 + 7, 7]/3 + Binomial[#1/4 + 5, 5]/4, MemberQ[{1, 5, 7, 11}, #2], 0, MemberQ[{2, 10}, #2], 3 Binomial[#1/2 + 11, 11]/8, MemberQ[{3, 9}, #2], Binomial[#1/3 + 7, 7]/3, MemberQ[{4, 8}, #2], 3 Binomial[#1/2 + 11, 11]/8 + Binomial[#1/4 + 5, 5]/4, True, 3 Binomial[#1/2 + 11, 11]/8 + Binomial[#1/3 + 7, 7]/3 ] & @@ {#, Mod[#, 12]} &, 26] (* Michael De Vlieger, Dec 18 2017 *)
Formula
if n == 0 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8 + C(n/3+7,7)/3+C(n/4+5,5)/4;
if n == 1,5,7,11 mod 12, a(n) = C(n+23,23)/24;
if n == 2,10 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8;
if n == 3,9 mod 12, a(n) = C(n+23,23)/24 + C(n/3+7,7)/3;
if n == 4,8 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8 +C(n/4+5,5)/4;
if n == 6 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8 + C(n/3+7,7)/3.
Extensions
More terms from Michael De Vlieger, Dec 18 2017