cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A296997 Number of ways to place 3 points on an n X n point grid so that no point is equally distant from two other points on the same row or the same column.

Original entry on oeis.org

0, 4, 78, 544, 2260, 7068, 18298, 41472, 85032, 161300, 287430, 486624, 789308, 1234604, 1871730, 2761728, 3979088, 5613732, 7772862, 10583200, 14193060, 18774844, 24527338, 31678464, 40487800, 51249588, 64295478, 79997792, 98772492, 121082700, 147441890, 178417664
Offset: 1

Views

Author

Heinrich Ludwig, Dec 23 2017

Keywords

Comments

Rotations and reflections of a placement are counted. If they are to be ignored, see A296996.
The condition of placements is also known as "no 3-term arithmetic progressions".

Crossrefs

Programs

  • Mathematica
    Array[(#^6 - 3 #^4 - 3 #^3 + 8 #^2)/6 - # Boole[OddQ@ #]/2 &, 32] (* Michael De Vlieger, Dec 23 2017 *)
    CoefficientList[ Series[-2x (2 + 29x + 93x^2 + 82x^3 + 32x^4 + x^5 + x^6)/((x - 1)^7 (x + 1)^2), {x, 0, 31}], x] (* or *)
    LinearRecurrence[{5, -8, 0, 14, -14, 0, 8, -5, 1}, {0, 4, 78, 544, 2260, 7068, 18298, 41472, 85032}, 32] (* Robert G. Wilson v, Jan 15 2018 *)
  • PARI
    concat(0, Vec(2*x^2*(2 + 29*x + 93*x^2 + 82*x^3 + 32*x^4 + x^5 + x^6) / ((1 - x)^7*(1 + x)^2) + O(x^40))) \\ Colin Barker, Dec 23 2017

Formula

a(n) = (n^6 - 3*n^4 - 3*n^3 + 8*n^2)/6 - (n == 1 (mod 2))*n/2.
a(n) = (n^6 - 3*n^4 - 3*n^3 + 8*n^2)/6 for n even,
a(n) = (n^6 - 3*n^4 - 3*n^3 + 8*n^2 - 3*n)/6 for n odd.
From Colin Barker, Dec 23 2017: (Start)
G.f.: 2*x^2*(2 + 29*x + 93*x^2 + 82*x^3 + 32*x^4 + x^5 + x^6) / ((1 - x)^7*(1 + x)^2).
a(n) = 5*a(n-1) - 8*a(n-2) + 14*a(n-4) - 14*a(n-5) + 8*a(n-7) - 5*a(n-8) + a(n-9) for n>9.
(End)

A296998 Number of ways to place 4 points on an n X n point grid so that no point is equally distant from two other points on the same row or the same column.

Original entry on oeis.org

0, 1, 90, 1620, 11810, 56613, 206234, 623904, 1641654, 3882985, 8431280, 17078364, 32641102, 59401153, 103638420, 174341920, 284041304, 449881893, 694849380, 1049316180, 1552766796, 2255936441, 3223157762, 4535226864, 6292505300, 8618661337, 11664674406, 15613614884
Offset: 1

Views

Author

Heinrich Ludwig, Dec 23 2017

Keywords

Comments

Rotations and reflections of a placement are counted.
The condition of placements is also known as "no 3-term arithmetic progressions".

Crossrefs

Programs

  • Mathematica
    Array[Binomial[#^2, 4] - 2 # (Floor[(# - 1)^2/4] (#^2 - 3) - (5 #^2/12 - 3 #/2 + 1/3 - Boole[Divisible[#, 3]]/3 + 3 Boole[OddQ@ #]/4 + Boole[Mod[#, 4] == 2])) &, 28] (* Michael De Vlieger, Dec 23 2017 *)

Formula

a(n) = binomial(n^2, 4) - (floor((n-1)^2/4)*(n^2-3) - ((5/12)*n^2 - (3/2)*n + 1/3 + (n == 0 mod 3)*(-1/3) + (n == 1 mod 2)*3/4 + (n == 2 mod 4)))*2*n.
a(n) = (n^8 -6*n^6 -12*n^5 +35*n^4 +56*n^3 -150*n^2)/24 + b(n), where
b(n) = 0 for n == 0 mod 12,
b(n) = -n^3/2 +11*n/3 for n == 1, 5, 7, 11 mod 12,
b(n) = 8*n/3 for n == 2, 10 mod 12,
b(n) = -n^3/2 +3*n for n == 3, 9 mod 12,
b(n) = 2*n/3 for n == 4, 8 mod 12,
b(n) = 2*n for n == 6 mod 12.
Conjectures from Colin Barker, Dec 23 2017: (Start)
G.f.: x^2*(1 + 87*x + 1351*x^2 + 7043*x^3 + 23072*x^4 + 52978*x^5 + 95887*x^6 + 138345*x^7 + 166488*x^8 + 164998*x^9 + 137795*x^10 + 94181*x^11 + 52940*x^12 + 23010*x^13 + 7601*x^14 + 1647*x^15 + 251*x^16 + 15*x^17 - 10*x^18) / ((1 - x)^9*(1 + x)^4*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) - 3*a(n-5) + 8*a(n-6) - 2*a(n-8) - 2*a(n-9) - 10*a(n-10) + 10*a(n-11) + 2*a(n-12) + 2*a(n-13) - 8*a(n-15) + 3*a(n-16) - a(n-17) + 3*a(n-18) + a(n-19) - 3*a(n-20) + a(n-21) for n>21.
(End)

A300131 Largest number of points that can be placed on an n X n point grid so that no point is equally distant from two other points on the same straight line.

Original entry on oeis.org

1, 4, 6, 9, 16, 17, 21, 26, 31, 34, 40, 46
Offset: 1

Views

Author

Heinrich Ludwig, Feb 26 2018

Keywords

Comments

This definition is a 2-dimensional generalization of A003002 ("no 3-term arithmetic progressions"). It generalizes the definition of A296468 to include not only triples on horizontal or vertical lines but on any straight line.

Examples

			On a 10 X 10 point grid 34 points (X) can be placed at most. Example:
  . X . . . X X . . .
  X X . . . X X . X .
  X . X X . . . . X .
  . . X . . . . X . X
  . . . . . . . . X X
  X X . . . . . . . .
  X . X . . . . X . .
  . X . . . . X X . X
  . X . X X . . . X X
  . . . X X . . . X .
		

Crossrefs

Extensions

a(11) from Bert Dobbelaere, Jan 09 2020
a(12) from Bert Dobbelaere, Jan 12 2020

A296994 Largest number of points that can be selected from an n X n X n triangular point grid so that no selected point is equally distant from two other selected points on a straight line, which is parallel to one side of the grid.

Original entry on oeis.org

1, 3, 4, 7, 10, 14, 18, 20, 23, 27, 31, 36, 42, 48, 54, 61, 68, 76, 84, 92, 98
Offset: 1

Views

Author

Heinrich Ludwig, Mar 26 2018

Keywords

Comments

This sequence generalizes the idea of A003002 ("no 3-term arithmetic progressions") for triangular point grids.
For the same idea applied to square grids see A296468 and A300131.

Examples

			At most 54 points (X) can be chosen from a 15 X 15 X 15 triangular point grid under the condition mentioned above. Example:
                 o
                X X
               X o X
              o X X o
             X X o X X
            X o o o o X
           o o X o X o o
          o o o o o o o o
         o o X X o X X o o
        o X o o X X o o X o
       X X o o X o X o o X X
      X o X X o o o o X X o X
     o X X o o X o X o o X X o
    X X o X X o o o o X X o X X
   X o o o o X X o X X o o o o X
		

Crossrefs

Extensions

a(20) from Heinrich Ludwig, Apr 24 2018
a(21) from Heinrich Ludwig, May 01 2018
Showing 1-4 of 4 results.