cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296526 Number of connected k-regular graphs on 2*n nodes with maximal diameter D(n,k) A296525 written as array T(n,k), 2 <= k < 2*n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 6, 3, 1, 1, 1, 1, 35, 60, 21, 5, 1, 1, 1, 2, 16, 2391, 7849, 1547, 94, 9, 1, 1, 1, 1, 58, 1, 2757433, 21609301, 3459386, 88193, 540, 13, 1, 1, 1, 4, 1, 154
Offset: 2

Views

Author

Hugo Pfoertner, Dec 14 2017

Keywords

Examples

			                               Degree r
        2   3   4   5    6        7        8     9   10   11 12 13 14 15
   n  ------------------------------------------------------------------
   4 |  2   1  Diameter A296525
     |  1   1  Number of graphs with this diameter (this sequence)
     |
   6 |  3   2   2   1
     |  1   2   1   1
     |
   8 |  4   3   2   2    2        1
     |  1   3   6   3    1        1
     |
  10 |  5   5   3   2    2        2       2      1
     |  1   1  35  60   21        5       1      1
     |
  12 |  6   6   4   3    2        2       2      2    2    1
     |  1   2  16 2391 7849     1547     94      9    1    1
     |
  14 |  7   8   5   5    3        2       2      2    2    2  2  1
     |  1   1  58   1 2757433 21609301 3459386 88193 540  13  1  1
     |                 lower bounds
  16 |  8   9   7   5  >=4      >=3       2      2    2    2  2  2  2  1
     |  1   4   1  154   ?        ?       ?      ?    ?    ?4207 21 1  1
     |              lower bounds
  18 |  9  11 >=8 >=6  >=4      >=4     >=3      2    2    2  2  2  2  2
     |  1   1   ?   ?    ?        ?       ?      ?    ?    ?  ? ?42110 33
.
a(35)=1 corresponds to the only 5-regular graph on 14 nodes with diameter 5.
Its adjacency matrix is
.
      1 2 3 4 5 6 7 8 9 0 1 2 3 4
   1  . 1 1 1 1 1 . . . . . . . .
   2  1 . 1 1 1 1 . . . . . . . .
   3  1 1 . 1 1 . 1 . . . . . . .
   4  1 1 1 . . 1 1 . . . . . . .
   5  1 1 1 . . 1 1 . . . . . . .
   6  1 1 . 1 1 . 1 . . . . . . .
   7  . . 1 1 1 1 . 1 . . . . . .
   8  . . . . . . 1 . 1 1 1 1 . .
   9  . . . . . . . 1 . 1 1 . 1 1
  10  . . . . . . . 1 1 . . 1 1 1
  11  . . . . . . . 1 1 . . 1 1 1
  12  . . . . . . . 1 . 1 1 . 1 1
  13  . . . . . . . . 1 1 1 1 . 1
  14  . . . . . . . . 1 1 1 1 1 .
.
A shortest walk along 5 edges is required to reach node 13 from node 1.
All others of the A068934(97)=3459383 5-regular graphs on 14 nodes have smaller diameters, i.e., 258474 with diameter 2, 3200871 with diameter 3, and 37 with diameter 4 (see A296621).
		

References

  • See A296525 for references and links.

Crossrefs