cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A361236 Array read by antidiagonals: T(n,k) is the number of noncrossing k-gonal cacti with n polygons up to rotation.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 5, 11, 1, 1, 1, 1, 8, 33, 49, 1, 1, 1, 1, 9, 63, 230, 204, 1, 1, 1, 1, 12, 105, 664, 1827, 984, 1, 1, 1, 1, 13, 159, 1419, 7462, 15466, 4807, 1, 1, 1, 1, 16, 221, 2637, 21085, 90896, 137085, 24739, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 05 2023

Keywords

Comments

The number of noncrossing k-gonal cacti is given by column 2*(k-1) of A070914. This sequence enumerates these cacti with rotations being considered equivalent.
Equivalently, T(n,k) is the number of connected acyclic k-uniform noncrossing antichains with n blocks covering (k-1)*n+1 nodes where the intersection of two blocks is at most 1 node modulo cyclic rotation of the nodes.
Noncrossing trees correspond to the case of k = 2.

Examples

			=====================================================
n\k | 1     2       3        4        5         6 ...
----+------------------------------------------------
  0 | 1     1       1        1        1         1 ...
  1 | 1     1       1        1        1         1 ...
  2 | 1     1       1        1        1         1 ...
  3 | 1     4       5        8        9        12 ...
  4 | 1    11      33       63      105       159 ...
  5 | 1    49     230      664     1419      2637 ...
  6 | 1   204    1827     7462    21085     48048 ...
  7 | 1   984   15466    90896   334707    941100 ...
  8 | 1  4807  137085  1159587  5579961  19354687 ...
  9 | 1 24739 1260545 15369761 96589350 413533260 ...
  ...
		

Crossrefs

Columns k=1..4 are A000012, A296532, A361237, A361238.
Row n=3 is A042948.

Programs

  • PARI
    \\ here u is Fuss-Catalan sequence with p = 2*k-1.
    u(n,k,r) = {r*binomial(n*(2*k-1) + r, n)/(n*(2*k-1) + r)}
    T(n,k) = if(n==0, 1, u(n, k, 1)/((k-1)*n+1) + sumdiv(gcd(k,n-1), d, if(d>1, eulerphi(d)*u((n-1)/d, k, 2*k/d)/k)))

Formula

T(0,k) = T(1,k) = T(2,k) = 1.

A296533 Number of nonequivalent noncrossing trees with n edges up to rotation and reflection.

Original entry on oeis.org

1, 1, 1, 3, 7, 28, 108, 507, 2431, 12441, 65169, 351156, 1926372, 10746856, 60762760, 347664603, 2009690895, 11723160835, 68937782355, 408323575275, 2434289046255, 14598013278960, 88011196469040, 533216762488020, 3245004785069892, 19829769013792908
Offset: 0

Views

Author

Andrew Howroyd, Dec 14 2017

Keywords

Comments

The number of all noncrossing trees with n edges is given by A001764.
The number of nodes will be n + 1.

Examples

			Case n=3:
   o---o   o---o   o---o
   |       | \       \
   o---o   o   o   o---o
In total there are 3 distinct noncrossing trees up to rotation and reflection.
		

Crossrefs

Cf. A001764, A005034, A006013, A296532 (up to rotation only).

Programs

  • Mathematica
    a[n_] := (If[OddQ[n], 3*Binomial[(1/2)*(3*n - 1), (n - 1)/2], Binomial[3*n/2, n/2]] + Binomial[3*n, n]/(2*n + 1))/(2*(n + 1));
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 27 2017, after Andrew Howroyd *)
  • PARI
    a(n)={(binomial(3*n, n)/(2*n+1) + if(n%2, 3*binomial((3*n-1)/2, (n-1)/2),  binomial(3*n/2, n/2)))/(2*(n+1))}

Formula

a(2n) = (A296532(2n) + A001764(n))/2, a(2n-1) = (A296532(2n-1) + A006013(n-1))/2.
a(2n) = A005034(2n).

A361359 Number of nonequivalent noncrossing caterpillars with n edges up to rotation.

Original entry on oeis.org

1, 1, 1, 4, 11, 49, 196, 868, 3721, 16306, 70891, 309739, 1350831, 5897934, 25740386, 112368153, 490489041, 2141121271, 9346382981, 40799215354, 178097506051, 777437032059, 3393689486976, 14814237183658, 64667544141561, 282288713218896, 1232255125682671
Offset: 0

Views

Author

Andrew Howroyd, Mar 09 2023

Keywords

Comments

The number of all noncrossing caterpillars with n edges is given by A361356.

Crossrefs

Cf. A296532 (noncrossing trees), A361356, A361358, A361360 (up to rotation and reflection).

Programs

  • PARI
    G(x)={ my(f = x*(2 - x)/(1 - 5*x + 3*x^2 - x^3), g = 1 + x + x^2*(3 - 2*x + (4 - 3*x + x^2)*f + (1 + 2*x)*f^2)/(1 - x)^2); (intformal(g) - 3)/x + x*subst((1 + 2*x*f)/(1-x)^2, x, x^2)/2 }
    { Vec(G(x) + O(x^30)) }

Formula

G.f.: (1 - 5*x - 2*x^2 + 27*x^3 - 20*x^4 - 13*x^5 + 23*x^6 - 5*x^7 - 6*x^8 + 3*x^9)/((1 - x)*(1 - 5*x + 3*x^2 - x^3)*(1 - 5*x^2 + 3*x^4 - x^6)).
a(n) = 6*a(n-1) - 3*a(n-2) - 26*a(n-3) + 36*a(n-4) - 2*a(n-5) - 18*a(n-6) + 6*a(n-7) + 5*a(n-8) - 4*a(n-9) + a(n-10) for n >= 10.
Showing 1-3 of 3 results.