A296605 Rectangle read by rows: T(n,k) is the number of n X n diagonalizable matrices over GF(3) that have exactly k distinct eigenvalues, n >= 0, 0 <= k <= 3.
1, 0, 0, 0, 0, 3, 0, 0, 0, 3, 36, 0, 0, 3, 702, 1404, 0, 3, 38070, 379080, 0, 3, 5351346, 341368830, 0, 3, 2434569858, 1231457092866, 0, 3, 2987199920970, 17481694843567584, 0, 3, 11966842794993066, 1077553466091961763220
Offset: 0
Examples
Array begins: 1, 0, 0, 0, 0, 3, 0, 0, 0, 3, 36, 0, 0, 3, 702, 1404, 0, 3, 38070, 379080, 0, 3, 5351346, 341368830
Links
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
Crossrefs
Cf. A290516 (row sums).
Programs
-
Mathematica
nn = 8; g[ n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[ QFactorial[n, q]] /. q -> 3; G[u_, z_] := Sum[z^k/\[Gamma][k], {k, 0, nn}] - 1 + u ; Grid[Map[Reverse,Table[\[Gamma][n], {n, 0, nn}] CoefficientList[Series[G[u, z]^3, {z, 0, nn}], {z, u}]]]