A296619 The number of nonnegative walks of n steps with step sizes 1 and 2, starting at 0 and ending at 2.
0, 1, 1, 6, 13, 52, 152, 550, 1813, 6453, 22427, 80330, 286895, 1038931, 3772801, 13807294, 50726893, 187332517, 694364517, 2583714636, 9644852364, 36115537269, 135607526865, 510496492338, 1926284451923, 7284476707597, 27602839227883, 104791979218326
Offset: 0
Examples
There are 6 walks of length 3: __ | | __ __| |_ __| |_ __ _ | | | |__| _| _| _| 2+2-2=2 2+1-1=2 2-1+1=2 __ __ _ | |_ _ | | | __| __ | _| |__| _| _| |__| 2-2+2=2 1+2-1=2 1-1+2=2
Links
- Robert Israel, Table of n, a(n) for n = 0..1667
Programs
-
Maple
B := n -> LinearAlgebra:-ToeplitzMatrix([0,1,1, seq(0, k=0..n-2)], symmetric): seq((B(n)^n)(1, 3), n=0..27); # alternative: T:= proc(n,k) option remember; if k < 0 or k > 2*n then return 0 fi; procname(n-1,k-2)+procname(n-1,k-1)+procname(n-1,k+1)+procname(n-1,k+2) end proc: T(0,0):= 1: seq(T(n,2),n=0..40); # Robert Israel, Dec 19 2017
-
Mathematica
b[n_] := ToeplitzMatrix[Join[{0,1,1}, ConstantArray[0,n-1]]]; Prepend[Table[MatrixPower[b[n],n][[1,3]], {n,20}], 0] (* Andrey Zabolotskiy, Dec 19 2017 *)
-
PARI
Next(v)={vector(#v+2, i, if(i<3||i>#v-2, 0, v[i-2]+v[i-1]+v[i+1]+v[i+2]))} my(v=vector(7,i,i==3)); for(n=1, 50, print1(v[5],", "); v=Next(v)) \\ Andrew Howroyd, Dec 18 2017
Formula
a(n) = A185286(n,2). - Robert Israel, Dec 19 2017
Comments