cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296619 The number of nonnegative walks of n steps with step sizes 1 and 2, starting at 0 and ending at 2.

Original entry on oeis.org

0, 1, 1, 6, 13, 52, 152, 550, 1813, 6453, 22427, 80330, 286895, 1038931, 3772801, 13807294, 50726893, 187332517, 694364517, 2583714636, 9644852364, 36115537269, 135607526865, 510496492338, 1926284451923, 7284476707597, 27602839227883, 104791979218326
Offset: 0

Views

Author

Feng Jishe, Dec 17 2017

Keywords

Comments

a(n) is the number of 2-D walks with n steps of type {(1,-2), (1,-1), (1,1), or (1,2)} starting at (0,0), ending at (n,2), and not dropping below the x-axis.
The sequence corresponds to element (1,3) of the matrix B(n)^n (see Maple script). Furthermore, element (1,1) of the matrix is A187430, the element (1,2) of these matrix is A055113.

Examples

			There are 6 walks of length 3:
        __
       |  |         __
     __|  |_     __|  |_     __    _
    |           |           |  |__|
   _|          _|          _|
    2+2-2=2     2+1-1=2     2-1+1=2
                    __
     __    _       |  |_           _
    |  |  |      __|         __   |
   _|  |__|    _|          _|  |__|
    2-2+2=2     1+2-1=2     1-1+2=2
		

Crossrefs

Programs

  • Maple
    B := n -> LinearAlgebra:-ToeplitzMatrix([0,1,1, seq(0, k=0..n-2)], symmetric):
    seq((B(n)^n)(1, 3), n=0..27);
    # alternative:
    T:= proc(n,k) option remember;
      if k < 0 or k > 2*n then return 0 fi;
      procname(n-1,k-2)+procname(n-1,k-1)+procname(n-1,k+1)+procname(n-1,k+2)
    end proc:
    T(0,0):= 1:
    seq(T(n,2),n=0..40); # Robert Israel, Dec 19 2017
  • Mathematica
    b[n_] := ToeplitzMatrix[Join[{0,1,1}, ConstantArray[0,n-1]]];
    Prepend[Table[MatrixPower[b[n],n][[1,3]], {n,20}], 0]
    (* Andrey Zabolotskiy, Dec 19 2017 *)
  • PARI
    Next(v)={vector(#v+2, i, if(i<3||i>#v-2, 0, v[i-2]+v[i-1]+v[i+1]+v[i+2]))}
    my(v=vector(7,i,i==3)); for(n=1, 50, print1(v[5],", "); v=Next(v)) \\ Andrew Howroyd, Dec 18 2017

Formula

a(n) = A185286(n,2). - Robert Israel, Dec 19 2017