cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296666 Table read by rows, the even rows of A296664, T(n, k) for n >= 0 and 0 <= k <= 2n.

Original entry on oeis.org

1, 1, 2, 1, 2, 5, 6, 5, 2, 5, 14, 19, 20, 19, 14, 5, 14, 42, 62, 69, 70, 69, 62, 42, 14, 42, 132, 207, 242, 251, 252, 251, 242, 207, 132, 42, 132, 429, 704, 858, 912, 923, 924, 923, 912, 858, 704, 429, 132
Offset: 0

Views

Author

Peter Luschny, Dec 19 2017

Keywords

Comments

Let v be the characteristic function of 1 (A063524) and M(n) for n >= 0 the symmetric Toeplitz matrix generated by the initial segment of v, then row n is the main diagonal of M(2n)^(2n).
Seems to be A050157 + its reflection. - Andrey Zabolotskiy, Dec 19 2017

Examples

			0: [  1]
1: [  1,   2,   1]
2: [  2,   5,   6,   5,   2]
3: [  5,  14,  19,  20,  19,  14,   5]
4: [ 14,  42,  62,  69,  70,  69,  62,  42,  14]
5: [ 42, 132, 207, 242, 251, 252, 251, 242, 207, 132,  42]
6: [132, 429, 704, 858, 912, 923, 924, 923, 912, 858, 704, 429, 132]
		

Crossrefs

Programs

  • Maple
    v := n -> `if`(n=1, 1, 0);
    B := n -> LinearAlgebra:-ToeplitzMatrix([seq(v(j), j=0..n)], symmetric):
    seq(convert(ArrayTools:-Diagonal(B(2*n)^(2*n)), list), n=0..10);
  • Mathematica
    v[n_] := If[n == 1, 1, 0];
    m[n_] := MatrixPower[ToeplitzMatrix[Table[v[k], {k, 0, n}]], n];
    d[n_] := If[n == 0, {1}, Diagonal[m[2 n]]];
    Table[d[n], {n, 0, 6}] // Flatten
  • Sage
    def T(n, k):
        if k > n:
            b = binomial(2*n, k - n - 1)
        else:
            b = binomial(2*n, n + k + 1)
        return binomial(2*n, n) - b
    for n in (0..6):
        print([T(n, k) for k in (0..2*n)])

Formula

T(n, 0) = T(n, 2*n) = A000108(n).
T(n, n) are the central binomial coefficients A000984(n).
T(n, k) = binomial(2*n, n) - binomial(2*n, n+k+1) for k=0..n.
T(n, k) = binomial(2*n, n) - binomial(2*n, k-n-1) for k=n+1..2*n and n>0.