A296666 Table read by rows, the even rows of A296664, T(n, k) for n >= 0 and 0 <= k <= 2n.
1, 1, 2, 1, 2, 5, 6, 5, 2, 5, 14, 19, 20, 19, 14, 5, 14, 42, 62, 69, 70, 69, 62, 42, 14, 42, 132, 207, 242, 251, 252, 251, 242, 207, 132, 42, 132, 429, 704, 858, 912, 923, 924, 923, 912, 858, 704, 429, 132
Offset: 0
Examples
0: [ 1] 1: [ 1, 2, 1] 2: [ 2, 5, 6, 5, 2] 3: [ 5, 14, 19, 20, 19, 14, 5] 4: [ 14, 42, 62, 69, 70, 69, 62, 42, 14] 5: [ 42, 132, 207, 242, 251, 252, 251, 242, 207, 132, 42] 6: [132, 429, 704, 858, 912, 923, 924, 923, 912, 858, 704, 429, 132]
Links
- Peter Luschny, Row n for n = 0..30
Programs
-
Maple
v := n -> `if`(n=1, 1, 0); B := n -> LinearAlgebra:-ToeplitzMatrix([seq(v(j), j=0..n)], symmetric): seq(convert(ArrayTools:-Diagonal(B(2*n)^(2*n)), list), n=0..10);
-
Mathematica
v[n_] := If[n == 1, 1, 0]; m[n_] := MatrixPower[ToeplitzMatrix[Table[v[k], {k, 0, n}]], n]; d[n_] := If[n == 0, {1}, Diagonal[m[2 n]]]; Table[d[n], {n, 0, 6}] // Flatten
-
Sage
def T(n, k): if k > n: b = binomial(2*n, k - n - 1) else: b = binomial(2*n, n + k + 1) return binomial(2*n, n) - b for n in (0..6): print([T(n, k) for k in (0..2*n)])
Comments