cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A296726 Expansion of e.g.f. arcsin(x)/(1 - x).

Original entry on oeis.org

0, 1, 2, 7, 28, 149, 894, 6483, 51864, 477801, 4778010, 53451135, 641413620, 8446433085, 118250063190, 1792012416075, 28672198657200, 491536207523025, 8847651735414450, 169292834944205175, 3385856698884103500, 71531660838216529125, 1573696538440763640750
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 19 2017

Keywords

Examples

			arcsin(x)/(1 - x) = x/1! + 2*x^2/2! + 7*x^3/3! + 28*x^4/4! + 149*x^5/5! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(arcsin(x)/(1 - x),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[ArcSin[x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[-I Log[I x + Sqrt[1 - x^2]]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    first(n) = x='x+O('x^n); Vec(serlaplace(asin(x)/(1 - x)), -n) \\ Iain Fox, Dec 19 2017

Formula

E.g.f.: -i*log(i*x + sqrt(1 - x^2))/(1 - x), where i is the imaginary unit.
a(n) ~ n! * Pi/2. - Vaclav Kotesovec, Dec 20 2017
a(2*n) = 2*n*a(2*n-1). - Greg Dresden, Apr 04 2024
a(2*n+1) = (2*n+1)*(2*n)*a(2*n-1) + ((2*n-1)!!)^2, using the double factorial notation from A001147. - Greg Dresden, Apr 11 2024

A302610 Expansion of e.g.f. -log(1 - x)*arcsinh(x).

Original entry on oeis.org

0, 0, 2, 3, 4, 20, 158, 819, 3624, 33984, 427482, 3819915, 29665260, 404822340, 6948032310, 88407058635, 991515848400, 17715286764000, 383952670412850, 6349179054589875, 93532380775766100, 2063197602667372500, 53913667654307868750, 1098018631195048591875
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Examples

			-log(1 - x)*arcsinh(x) = 2*x^2/2! + 3*x^3/3! + 4*x^4/4! + 20*x^5/5! + 158*x^6/6! + 819*x^7/7! + 3624*x^8/8! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(-log(1-x)*arcsinh(x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[-Log[1 - x] ArcSinh[x], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: -log(1 - x)*log(x + sqrt(1 + x^2)).
Showing 1-2 of 2 results.